

SEPTEMBER 1981 60p

Feedback loudspeaker system

Custom-designed

 integrated circuitsDirect memory access
Video discs update

PROFESSIONAL TOOLCASES

 or Service Engineers， $39^{\cdot 90}$

8ヵGL ON L870＾L86L घヨgWヨLdヨS O7yom SSヨ7ヨyim

wreless worde

SEPTEMBER 1981 60p

Feedback loudspeaker system

Custom－designed

 integrated circuitsDirect memory access Video discs update

Autoranging nf: millivoltmeter

wireless
 world

ELECTRONICS /TELEVISION / RADIO / AUDIO

SEPTEMBER 1981 Vol 87 No 1548

31 View from the footprint
32 Acceleration feedback loudspeaker
by D. De Greef and J. Vandewege
by. De Greef and J. Vandewege
37 Consumer video records
Can we distinguish 'ampli-
fier sound'? This article first discusses the subjective sapects of listening tests then
describes objective laboratory experiments
verify listeners' reports.
Microprocessor interfacing.
First of a series on methods for connecting microproces-
sors/microcomputers to sors/microcomputers to
other equipment. Part one on a equniversal" interface
for 6502 -based microcomfor 6502 -based microcom-
puters.

Multichannel digital recorder. Using an ordinary stereo cassette recorder and
digital electronics to construct a 12 -channel instrumentation tape recorder
with zero wow and flutter.

Current issue price 60 p , back is-
sues (if available) $£ 1.00$, at Retail and Trade Counter, Units $1 \& 2$,
Bankside Industrí)

(©) IPC Business Press Ltd, ,
D. Zissos and G. Stone Surrey, TMe Quadrant, Sutton, Sditorial \& Advertising offices:
duadrant House
The
Uuadrant,
 Subscription rates: 1 year $£ 10.00$ Distribution: Quadrant House,
hhe Quadrant, Sutton, Surrey Subscriptions: Oakfield House,
 change of address. the Printed Wogers Lito, Expenitiers

Front cover caption shows a Leica camera incorporating
Ferranti u.l.a. (see page 52) on a background formed by tracks on an integrated cir-
cuit. Photograph by Paul

by D. De Greef and J. Vandewege
40 Consumer video records
Microcomputer tester Tony Cassera
43 Letters to the editor Medical technicians' training Televisiong for no-signal areas

47 Microprocessors in the gas industry

	52 Improved custom-designed I.s.i.
Op-amp oscillator	Variable expansion unit$\quad 600$-ohm floating source ideas
59 Frequency synthesizer for c.b.	
by P. E. Chadwick	

$$
69 \text { Designing with microprocessors - } 11
$$

73 CES, Chicago
by G. W. Tillett

BBC's v.h.f. plans \quad| 75 News of the month |
| :---: |
| Levy on blank tape |\quad Tv subtitling for the deaf

78 World of amateur radio
$\left.\begin{array}{c}\text { 79 Phase locked detector } \\ \text { by D. A. Tong }\end{array}\right]$

84 New products

WIRELESS WORLD SEPTEMBER 1981

Soldering equipment designed by specialists for professionals. ADCOLA IOI Soldering Unit

FEATURES

- no moving parts
- no magnetic effect
no tip voltage
no mains interference
- no real maintenance costs (bit/tip changes only)
variable lockable temperature $120^{\circ} \mathrm{C}-420^{\circ} \mathrm{C}$ - total 50 watt electronic control ($\pm 2 \%$) - total 50 watt electronic
- electrical safety approved 240 V 24 V
easy tool interchangeability from one Unit to another
~orcomplete $\mathbf{2 0 0 1}$ Soldering Station
Soldering tool and control unit as Unit 101 but with the additional features
- filtered two speed fume extraction
filtered two speed fum
built in bench lighting
built in bench lighting
solder reel dispenser
- clear bench area
- Adiron ${ }^{\circledR}$ long life bits/tips the same range as that for Unit 101

Brokers

 TEST EOUIPMENT except the pricel

Bruel \& Kjaer 2203 Sound Level Meter CIW 4165 $1 / 2$ in Microphone. 26-140dBA. A, B or C weighting. Fast or slow response. Bargaln In Unused Condition Weir.	Tektronix 45 Sual Trace Portable Oscilloscope DC-50MHz. 5 mV -5V/div. Full delayed sweep. Super conditio	Hewlett Packard. 4204A Digital Oscillator. $10 \mathrm{~Hz}-1 \mathrm{MHz}$. $1 \mathrm{mV}-10 \mathrm{~V}$ £695.00	Wayne Kerr RA200 Frequency Response Analyser. Frequency range 20 Hz 30 KHz or $200 \mathrm{~Hz}-200 \mathrm{KHz}$. 11 in . crt display £850.00
	$72 \mathrm{MH}+2.2 \mathrm{NV} \cdot 2 \mathrm{~V} \quad$ … 6750.00 	TRANSMISSION MEASURING EOUIPMENT 	Hewiett Packard: , $5 \mathrm{~Hz} \mathbf{6 0 0 \mathrm { KHz } \text { . } \mathbf { E 5 9 5 } . 0 0}$ Marconi. TF7910 Deviation Meter. $4-1024 \mathrm{NHz}$
$\begin{aligned} & \text { REC } \\ & \text { Racall } \end{aligned}$ S. E. Labs.			
	 distation		
SIGNAL SOURCES 	SOUND LEVEL METERS		
			STRR R fifless Late ARRIVALS: Marconi
	Gener at Rado. 7nt sound Levelmeter. 70-1200 Dight 1983 Sound leve Aeter. 70-120d8. A $\$ 300.00$ 		
	T.V. TEST EOUIP PAL TVPatern Genereator 5180.00		Miles Hivolt Phllle Radlometer SMGiCSereeo GeneratorE335.00

5 GOOD REASONS WHY YOU SHOULD DEAL WITH ELECTRONIC BROKERS
 Brokers, it can be yours in a matter of only days.
No waiting for No waiting for
manufacturers lenathy production schedules.

Electronic Brokers Limited 61/65 Kings Cross Road London WC1X 9LN England Telephone: 01-278 3461 Telex: 298694 Elebro G

Hours of Business: 9a.m. 5p.m. Mon-Fri. Closed lunch 1-2p.m. Carriage and Packing charge extra on all tems unless otherwise stated.

New test
equipment equipment
catalogue just
out Send for out. Send for your free copy
now. Beran Retr

Electronic Brokers CURRENT USEDDEC Computer equipment and periphals

New Line of Wave Solderable Heat Sinks

Thermalloy International offers 35 different styles of wave solderable heat sinks for TO-3 and plastic packages. Styles include board mounted stampings and flat sided extrusions. Solderable Stud ${ }^{\text {TM }}$ Heat Sinks allow the heat sink/device to production line. It is dropped into plated-thru holes in the P.C Board and wave soldered with other components. Eliminates hand soldering and extra inspections to reduce your production steps by 50%. All work can now be done from one side of the board, and less mounting hardware is required.

For product samples and full technical literature contact MCP Electronics.

MCP Electronics Ltd.
38 Rosemont Road, Alperton, Wembley, Middlese Telephone 01-902 5941. Telex: 923455.
wW - 027 FOR FURTHER DETAILS

sonimacis

XIX INTERNATIONAL MAGE, SOUND AND ELECTRONICS SHOW
TO SEE AND HEAR

4 LARGE EXHIBITION PALACES DEALING WITH

BARCELONA (SPAIN) 28th SEPTEMBER - 4th OCTOBER 1981

- In Information: Plazade España \sin Feria de Barcelona TEL. 2233101 BARCELONA-4 (SPAIN)

Low-cost voice-logging for people with more important things to do.

The problem: logging telephone and radio messages without spending a fortune on equipment or hiring an expensive technician to operate it. SIMPLICITY
With its automatic cassette-loading and fully automatic changeover from one deck to another Autostore can-quite literally - be operated by hoever happens to be around.
nd it provides over 24 hours of unattended continuous recording on eight channels. VERSATILITY
Able to log radio and telephone messages simultaneously, Autostore can form part of a new system-or fit just as easily into an existing one.
And its uses vary from ambulance, fire, police nd security applications to the recording of communications and taxi services.

Racal Recorders Racal Recorders Limited, Hardley Industrial Estate,

 Hythe, Southampton, Hampshire SO4 6 ZH, England.RELIABILITY
Available in 4 or 8 channel versions, and with integral micro-processor controlled automatic retrieval, Autostore is engineered to the very highest standards by the company which pioneered air traffic control recording techniques. ULL DETAILS
or full details of Autostore send off the coupon today.
 \square arrange for a demonstration at my own premises Name Fosition
Company
Address. Racal Recorders Limited, Hardley Industrial Estate,

CONCISE PARTS CATALOGUE

OUTNOW!

AMBIT'S NEW CATALOGUE

$\begin{aligned} & \text { In an attempt to collate and organize our burgeoning ranges } \\ & \text { of 'stock' components (now over } 7000 \text { line items) we theve }\end{aligned}$
$\begin{aligned} & \text { of 'stock' components (now over } 7000 \text { line items), we have } \\ & \text { at last produced a 'concise' } 80 \text { page parts catalogue to }\end{aligned}$
$\begin{aligned} & \text { at last produced a 'concise' } 80 \text { page parts catalogue to } \\ & \text { supplement the popular 'Tecknowledgey' series of 'wordy }\end{aligned}$
$\begin{aligned} & \text { applications catalogues, which now lists a wide range of basic } \\ & \text { components - as well }\end{aligned}$
$\begin{aligned} & \text { components - as well as our unique RF and Communication } \\ & \text { components. The World of Radio and Electronics contains }\end{aligned}$
$\begin{aligned} & \text { components. The World of Radio and Electronics contains } \\ & \text { everything the informed electronics user needs, at prices }\end{aligned}$
$\begin{aligned} & \text { which we gurantee will match the lowest on the market for } \\ & \text { equivalent product. }\end{aligned}$
equivalent product.
$\begin{aligned} & \text { Prices appear on the page alonsside the part numbers, and } \\ & \text { the catalogue is now updated quarterly - available either }\end{aligned}$
$\begin{aligned} & \text { the catalogue is now updated quarterly - available either } \\ & \text { direct from here (60p all inc) or at most newsagents and } \\ & \text { bookstals where you }\end{aligned}$
$\begin{aligned} & \text { bookstalls where you can find electronics publications. So } \\ & \text { as well as all the run-of-mill' items like resistor }\end{aligned}$
$\begin{aligned} & \text { as well as all the 'run-of-mill' items like resistor, capacitors, } \\ & \text { hardware, solder etc - you now have the first genuinely }\end{aligned}$
$\begin{aligned} & \text { complete, parts source for the radio, communication, elec- } \\ & \text { tronics, computer user. }\end{aligned}$
Ambit International
200, North Service Road,
Brentwood,
Essex CM14 4SG

WW - 065 FOR FURTHER DETALLS

Audio power meter

Wide range:

* 30 Hz to $30 \mathrm{k} \mathrm{Hz} * 10 \mu \mathrm{~W}$ to 50 W
* $1-2$ to $1000 \Omega \quad *$ mains/battery
* decibel scale -18 dBm to +47 dBm

Famell
FARNELL INSTRUMENTS LIMITED SANDBECK WAY-WETHERBY WEST YORKSHIRE LS22 4DH TELEPHONE (0937)61961

Quartz Crystals

IMMEDIATE DELIVERY ON ALL THESE INSTRUMENTS
(PHILIPS CHOICE FOR SERVICE

NEW PHILIPS CATALOGUE
The 300-page 1981 Philips Test and
A selection from the range of Philips instruments with wide service applications.
PM 5326 RF signal generator

* $100 \mathrm{kHz}-125 \mathrm{MHz}$ in nine overlapping
ranges
* Built-in 5 digit counter
* 50 mVRF output at 75Ω can be
attenuated to over 100 dB
* Electronically stabiiized output level
* Wobbulator facility

Reader inquiry number 22I
PM 2517 digital multimeter

* Full four digits
* Choice of LED or LCD display
* True RMS AC

input
* Auto TV triggering
* Same sensitivity on X and Y channel
* B-invert facility

Reader inquiry number 223
PM 6667 and 6668 high resolution counters

* I GHz (PM 6668) or 120 MHz (PM 6667)
* Microprocessor control with built-in
intelligence
* Auto trigger
* Auto triggering on all waveforms and duty
cycles
* 15 mV RMS sensitivity
* High stabilily X-tal oscillators: $10^{-7} /$ month
* Self-diagnosis routine

Readers inquiry number 224

Measuring Instruments catalogue contains
details of the company's full audio and video service equipment capability, as well as of its entire test and measuring range. reader inquiry number 225. WHERE TO BUY YOUR PHILIPS AUDIO
AND VIDEO SERVICE EQUIPMENT Th The entire range is available from the Philips Electronic
Instruments Deparartent see address below)r from
Philips Service Centres ('phone Prilps Service Centres ' 'phone 0.1.6860005 for the
nddress of your nearest branch). In addition, the
PM 217 . PM 2517 and PM 3207 are avalable from Wessex
Electronics Ltd, 141111 North Street, Downend, Electronics Ltd, I 14 -I 16 North Street,
Bristol BSI 65 SE. Tel (0272) 571

INPUT

RROMPHLLPS IEST 8 MEASURNG MSTRUMENT
se the inquiry service to obtain ifformation about the
.

PM 5519 CTV pattern generator ${ }^{\text {Inquir }}$ PM 5326 RF signal generator PM 2517 digital multimeter
PM 320715 MHz oscilloscope PM $62667 / 5668$ frequency counters
1981 Test \& Measuring catalogue No
220
221
222
223
224
225 Pye Unicam Ltd
Philips Electronic Instruments Dept York Street, Cambridge, CB1 2 2PX. England
Tel: Cambridge (0223) 358866 Telex: 817331

* Options include temperature and data
* Options inclu

Reader inquiry number 222
PM 3207 dual trace oscilloscope

* Ideal for service and general purpose

applications
$*$
$15 \mathrm{MHz} / 5 \mathrm{mV}$

Test \& Measuring Instruments

1月0○S...

... and the art of Audio Maintenance

This is the LA1 analyser from LINDOS. Not much bigger than a transistor radio - it measures frequency, distortion, level, noise and wow and flutter. It is very accurate and easier to use than most 'complete test sets.' Options are available that transform it to meet almost any requirement.
THE BASIC LA1 ANALYSER COSTS $£ 450$ + V.A.T.
The LA1 P1 (as shown) costs f599 and incorporates true rms, Quasi-Peak Noise and PPM facilities. Made in Britain by LINDOS ELECTRONICS,
Sandy Lane, Bromeswell, Woodbridge, Suffolk, IP12 2PR. Tei: EYKE (03947) 432. ww - 005 FOR FURTHER DETAILS

Just 50 p will bring you the latest Wilmslow Audio 80 page catalogue packed with pictures and specifications of HiFi and PA Speaker Drive Units, Speaker Kits, Cabinet Kits.

1000 items for the constructor.
CROSSOVER NETWORKS AND COMPONENTS.
GRILLES, GRILL FABRICS AND FOAM. PA, GROUP DISCO CABINETS - PLUS MICROPHONES AMPLIFIERS - MIXERS - COMBOS - EFFECTS
SPEAKER STANDS AND BRACKETS - IN-CAR SPEAKERS AND BOOSTERS ETC. ETC.
\star Expert staff - Sound advice \star
\star Choose your DIY HiFi Speakers in the comfort * (Customer op our listed demonstration facilities) (Customer operated demonstration facilities)
\star Ample parking \star American Express accepted *

New KONTAKT Sprays

wW - 050 For further details bility.
Why compromise?

FAST ERECTING
GHRK MaSTS 25
Here is the expertise you can depend on ~

years in this specialist
 specialist field

 When you choose a mast from the compre-hensive Clark range you are assured of a high standard of Engineering and operational relia-

Extended heights 4 metres- 30 metres, capable of lifting headload 1 kg 200 kgs .
Sectional or telescopic vehicle mounting. Write or phone us for details today.

Put your ideas in our box.

Meet the Idea Box. The short- or a blank foil board you can use
est distane betweon ide and existimo P PB desians. All. Meet the Idea Box. The short.
est tistane between ide and
worring porotye or one-ota
kind instrumenpe kind instrument:
design the teat ite te-saver! Y You
dhe
design the circcitit we provivo
the Dower suppie. .asshmbed
and tested...and the right case
and tested....and the right case
to house it ail.

ete with three highly regulated w-ripple power supplies (fixed VDC @ 1A: + and - 15VDC. Vriable. @0.5A). Plus your choicea solderless breadboard: a pre ched.pre-drilled PCB which em ates the hole connection of the																				

or existing PCB Pestos.gns Alll.
housed in our attractive, high.
huact
 E79.75. Idea Box has the
capacity tor bio. dias as well
as small ones. You ca

 solderless breadboard's pattern shouldn t t be kept waiting

CLARK MASTS LTD.
Binstead,
PO33 3PA, England.
Telephone Ryde (0983) 6369 ,

WW - 024 FOR FURTHER DETAILS

SIEMENS

320 pages worth of the latest \& best in signal processing components.
Write to Pascall for this new M80 catalogue which covers the integrated networks from DC to 4GHz. If also provides reliability data in the form of MTBF calculations for each product area. Merimoc is one of the World's most technically advanced
companies specialising in low frequency lumped el companies specialising in low frequency lumped element component and inegrated nework, microwave stmpine componenis, subsystems, high power feritit isolatars ond circulators.
So write to pascall today for your copy of the M80 on your
 your area of interest - we guarantee you'll find it one of the best.

Pascall Electronics Limited
Hawke House Green Lien

the best in electronics WW - 039 FOR FURTHER DETAIL

You tell us well deliver!

$$
\begin{aligned}
& \text { We have the UK manufacturing facilitites experience and skills } \\
& \text { to oive you the panel meter you want. With all aspects of panel }
\end{aligned}
$$ ander construction under our controlit means you can specify and get the sensitivity, movement ballistics and scale y you want.

In all adds up to greater flexibility and a wider choice.
You want the You want them quickely? - of coursel Low quantities or large
quantities present no problems. Next time why not give us a quantities present no problems. Next time why not give us a
call - ask for Colin williams, tell him what you want - you could
be surprised at what he may have to tell youl 1)

Bach-Simpson

wW-016 FOR FURTHER DETAILS

AmCron

 INDUSTRIAL MUSCLE
Model - M600
\star POWER RESPONSE DC $-45 \mathrm{KHz} \pm 1 \mathrm{~dB}$
OUTPUT POWER IN EXCESS OF 1.5KW INTO 2.75 Ohm LOAD (CONTINUOUS R.M.S.) D.C. OUTPUT 20 AMPS AT 100 VOLTS OR 2KVA

* PLUG-IN MODULES: CONSTANT VOLTAGE/CURRENT PRECISION OSCILLATORS \& UNIPOLAR AND BIPOLAR DIGITAL INTERFACES, FUNCTION GENERATORS, AND MANY OTHERS.
\star OUTPUT MATCHING TRANSFORMERS AVAILABLE TO MATCH VIRTUALLY ANY LOAD.
F FULL OPEN AND SHORT CIRCUIT PROTECTION GUARANTEED STABLE INTO ANY LOAD
TWO UNITS MAY BE CONNECTED TO PROVIDE UPTO 4kW.
- INTERLOCK CAPABILITY FOR UP TO EIGHT UNITS

3-YEAR PARTS AND LABOUR WARRANT
For full details on all Amcron Products write or phone Chris Flack

Analogue Associates
P.O. BOX 3

ATTLEBOROUGH
KR17 2PF
Tel: 0953-452477

All $h=14$
 TheWorld's Radio Broadcasting Stations and European FM/TV

C R Both

The World's Radio Broadcasting Stations provides the radio enthusiast with information on stations likely to be heard during worldwide listening.
European long, medium and FM stations and the
world's short wave stations are listed in groups by country in order of stations are listed in groups by
concy. Wavelength, power, map coordinates and the name of the town are given.
European VHF and UHF TV stations are also listed by ountry and accompanied by details of their power, ignal polarisations, programme information, town
$13 \times 143 \mathrm{~mm} \quad 226 \mathrm{pags}$
$0408011564{ }^{2} 5.50-226$ pages
ORDER NOW from your local bookseller
h case of difificulty send cash with order to Patricia Davies,

Cossodd Electioncs
 Toroidal Power transformers

[^0]
dectivic oficectilipueit
 now youcan reach more new users thanyouever knewexisted.

Office Systems is new. And it's unique. It's the first quality monthly magazine for directors, partners and senior managers who are new Office Systems will solve their problems and answer their questions in clear, businessman's English. No jargon. Office Systems will solve advertisers' problems too-with a controlled circulation of named, requested readers right from the start and a total circulation of 32.000 . It will operate a reader-reply service. No wastage. No.waiting. Ad. Manager Tony Kaminski is waiting

FIRSTISSUE
OCTOBER '8
For more details contact Ad. Manager Tony Kaminski at Quadrant House, The Quadran Sutton, Surrey SM2 5AS Tel: 01-661 3105 Published by IPC Electrical- Electronic Press Lt Published by IPC Eectrical-Electron
A member of Business Press Ltd

MICROCOMPUTER COMPONENTS

TDEVICE PRICE	Prices	PRICE	Elivery	PRICE:
CPus	74LL15	0.15	cmos	
6502 6800	${ }_{7}^{74152520}$	0.13 0.15	4001	${ }_{0}^{0.12}$
6802 6803	${ }^{1} 744458522$	${ }_{0}^{0.15}$	${ }_{4}^{4000} 4$	${ }_{0}^{0.12}$
		(e.15	${ }_{\substack{4007 \\ 4008}}$	e. 0.14
	${ }^{7} 74454538$	0.14	4009	${ }_{0} .31$
	${ }_{7}^{7445333}$	0.17	${ }_{4011}^{4010}$	${ }_{0}^{0.37}$
${ }_{6520} 5$	-744533	0.17	${ }_{4}^{4012}$	${ }_{0}^{0.34}$
	741540	0.14	4014	0.62
6821 6840	${ }^{7} 7$	0.42	${ }_{4015}^{4015}$	${ }_{0}^{0.28}$
688888 ${ }^{6048}$	-7445488	${ }^{0.750}$	${ }_{4017}$	${ }_{0}^{0.59}$
${ }_{68820}^{6850}$	${ }^{7} 744551$	0.14	4019	${ }_{0} 0.36$
${ }_{6887 \text { A1T }}$	${ }^{741555}$	0.15	4020	${ }_{0}^{0.68}$
${ }_{6880}^{68759}$	-741573	${ }_{0}^{0.22}$	4022	0.98
cier 8827	${ }_{7}^{7445575}$	(0.30	${ }_{4}^{4024}$	${ }_{0} 0.39$
${ }_{82216}^{8224}$	${ }^{7445757}$	0.22	${ }_{4}^{4025}$	
	${ }_{7} 7445858$	0.54	${ }_{4027}$	0.36
${ }^{8251}$ 825 ${ }^{\text {82, }}$	${ }_{7}^{7415858}$		${ }_{4}^{4023}$	1.55
${ }_{8}^{82535}$	${ }_{7} 7445580$	${ }_{0}^{0.36}$	${ }_{4033}^{4034}$	${ }_{1}^{1.30}$
	${ }_{7} 7445959$		${ }_{4}^{4035}$	
Z800 ${ }^{\text {PM }}$ (11.52	744593	0.39	${ }_{4036}^{4039}$	${ }_{2}^{2.25}$
	74 745109	${ }_{0}^{0.28}$	4040	${ }_{0} .67$
Z80A DaRT $\quad 7.67$	74.5112	0.26	40041	${ }_{0}^{0.756}$
	7445114	0.26	4043	0.62
	${ }_{7445123}$	0.57	4	${ }^{0} .30$
	7415124		4046	0.75
	${ }_{7} 74.515126$	${ }_{0}^{0.29}$	${ }_{4}^{4048}$	0.44
${ }_{\text {z }}^{\text {8 }}$	74.15132		4049	0.27
MEMORIES	74415138	${ }_{0} .40$	${ }^{4051}$	0.62
	7445139		${ }^{4055}$	
	74415148	1.13	4054	1.02
	74.5151.			${ }^{1.888}$
	7415155	0.50	4063	0.98
${ }_{4118.3}^{411200{ }^{\text {a }} \text { - }}$	${ }_{7} 74.151568$	${ }_{0}^{0.50}$	${ }_{4067}^{4006}$	${ }_{0} 0.22$
	74151588	0.430	${ }_{40688}^{4068}$	0.21 0.15
regulators	7445161	- 0.43	4070	0.23
${ }_{7805}^{7805}$	${ }_{7}^{7415162}$	0.43	${ }_{4072}$	${ }^{0.20}$
7812 7905	7445164			d. 20
7912	7415166	0.37	4075	0.67
	74.5	0.78	4077	0.23
${ }_{6845} 989$	${ }^{7} 74.51518151$	${ }_{1.50}^{0.60}$	${ }^{4081}$	0.20
BuFFras	${ }^{744 \text { LS190 }}$	${ }_{0.61}^{0.61}$	${ }_{4085}^{4085}$	0.45
${ }_{88}^{81 L 596}$	744		${ }^{4086}$. 53
	${ }_{7} 74.515194$	${ }_{0.42}^{0.9}$	${ }_{4}^{4023}$	0.80
	74.5195	0.42	4507	${ }_{0}^{0.35}$
	7445	${ }_{0.68}$	${ }_{4510}$	0.67
	${ }_{744152215}$	${ }_{\text {di.04 }}^{0.04}$	${ }_{4512}^{451}$	${ }_{0}^{0.63}$
Misc. SUPPORT CHIIPS	7445241	1.15	4514	${ }^{1.53}$
	${ }^{74454523}$	${ }_{0} .85$	${ }_{4516}$	0.72
AY -5.-2376 $^{\text {a }}$ (lent $/ 7.00$	${ }_{744.15244}$			a.72 0.56
MC1488 M1489 0.75 0.75	7445247	${ }_{0} .41$	${ }_{4520}$	0.71
MC14411	${ }_{744545248}$	- 0.74	${ }_{4522}^{452}$	1.15
	744.5251	0.46	4526	0.75
	7445555	0.57	${ }_{4528}^{4528}$	0.790
	${ }_{744515259}$	0.45	${ }_{454}^{4382}$	1.15
	${ }_{7} 74.55261$	3.12	${ }_{4543}$	1.15 1.50 1
$\underset{\text { Z2Na32 }}{ }$	${ }_{7} 74.5152736$	0.97	${ }_{4555}$	0.40
	744.1579	0.35	${ }_{4585}^{4565}$	0.05 1.05
Handbook	7445290	0.60		
74LS SERIIES	${ }_{7}^{744 \text { LS } 2393}$	${ }_{0.39}^{0.53}$	${ }_{\text {chrstals }}^{\substack{\text { cht }}}$	1.80
${ }_{7}^{74 \text { [4501 }}$ - 0.15	7445366	0.38		
$\begin{array}{ll}\text { 744LS02 } & 0.14 \\ 774503\end{array}$	${ }_{7} 74.4535685$	${ }_{0}^{0.38}$	${ }_{\text {PINS }}$ ILSOCKTS	
${ }^{7414504}$	${ }_{7} 74.153737$	0.79	${ }_{14}^{8}$	
$\begin{array}{ll}\text { 744.505 } & 0.15 \\ 744508\end{array}$	${ }_{744} 74.5375$	0.50	${ }_{16}^{14}$	0.09
	${ }_{74453537} 7$	0.73	${ }_{20}^{18}$	0.14 0.16
	T44.LS379	-.56	${ }_{24}^{22}$	0.18 0.20
		ci.61	28	(e.24

MIDWICH COMPUTER CO. LTD.

The simple answer to all your power supply problems.

Uninterruptible Power Supplies - UPS TSTANDBY POWER 50 hz Smputer programeR. Invaluable for winding down continuous power is essential. \square STABILISATION. 5% Vital to combat mains fluctuations and ensure the operation of equipment at \square TRANSIENT ATTENUATION. Provides suppression of mains born interterence (spikes)
An unbeatable power package from $£ 395$ ex works
including maintenance free lead acid batteries including maintenance free lead acid batteries. At
Galatrek international, UPS are DOWN to unbeatab prices.
For more information, cut the coupon or contact Galatre direct. Mr R Koffler, Galatrek International, Scotland
Street, Llanrwst, nr Colwyn Bay Gwynedd North Wales, Great Britain, Tel No: 0492-640311/641298 Night Service: 0492-30592 Telex: 617114 A/B Galahu

TRANSMITTER \& RECEIVER TEST STATION with current B.S. calibration certificates $4000: 300 \mathrm{~Hz}$ to 520 MHz in ALSO AVAILABLE WITH C.1 Hz steps extendable to CURRENT CALLERRATION
980 MH . AM. FM. PM and

O.1dB steps, $\begin{aligned} & \text { MARCONI AUTO } \\ & 4900 \text { : Peak }\end{aligned}$ DISTORTION METER
$\begin{array}{lll}\text { 4900: Peak and average RF } & \text { DISTORTION METER } \\ \text { and AF frequency modulation } & \text { TF2377A } \\ \text { and }\end{array}$ and AF requency modulation, MARCONI MODULATION
depth deviation, noise, and
distortion. Both manual or computer POSTALENQUIRIES ONLY to: $\begin{array}{ll}\text { PostaL } \\ \text { programmable. } \\ \text { Complete with manuals. } & \text { NMA } \\ \text { F Edgeworth Court }\end{array}$ $\begin{array}{ll}£ 5000.00 & \text { Fordham Road } \\ \text { New Barnet, Herts, U.K }\end{array}$

cavern micro modules Designed for 280 based systems, these modules are sulitable for
Microcomputer expansion and the development of M icro systers.

 can a so be soldered
First in the range are:
${ }^{80}$-006 $16 \mathrm{~K} \times 8$ bit dynamic RAM

... $£ 13.60$

Each RAM \qquad More will follow shortly

CAVERN ELECTRONICS
Stratiord Road Wolverton Milon Kanes MK125
WW - 064 FOR FURTHER DETAILS

DANAVOX ARE ALWAYS COMING UP WITH SOUND IDEAS.

STETOCLIP JUNIOR 60 HEADSET

STANDARD \& SUB-MINOR EARPHONES

STETOCLIP HEADSET HEADSET

SENIOR STETOCLIP HEADSET

STETOCLIP GEMINI HEADSET

STETOTUBE HEADSET \& SOUND PLUG

STETOMIKE HMT 808

$2,5 \mathrm{~mm} 3,5 \mathrm{~mm}$ JACK PLUGS \& SOCKETS

INDUCTIVE LOOP AMPLIFIER TYPE 36A

FIELD STRENGTH TESTER FSI

The Danavox policy has always been one of constant improvement.
Our refinement, development and research has enabled us to offer an advanced range of components and accessories for dictation machines, tape recorders, tele-communications, hearing aids and electro-acoustic equipment.

All our products are built with care and
recision.
And all carry the Danavox guarantee. ww - 010 For further details

For more information abou any Danavox product, contact John Carter.

Danavox

DANAVOX (Gt. Britain) Ltd.,
1 Cheyne Walk, Northampton. NN1 5PT Tel: (0604) 36351 Telex 312395

ww - 033 FOR FURTHER DETALLS

FLOPPY DISK DRIVES
NOW EVEN LOWER PRICES UNBELIEVABLE BUT TRUE! READ ON!

SIEMENS FDD - 100-8/FDD - 200-8 Fully Shugart Compatible Siemens $\mathrm{g}^{\prime \prime}$ single and double sided disk drives are
available onow with unbeatable prices at single unit pricing Note these specifications:

FDD 100 -8
Single
Sided
Single Sided
250 K
20

OTHER PRODUCTS C.W.O. 30 DAYS
CP/M 2.2
BASIC COMPILER
WORD STAR
MAIL MERG
SUPERSORT
$94.05 \quad 99.00$

Send S.A.E. for further details

IRVINE BUSINESS SYSTEMS

Krohn-Hite Function Generators

NIIHCENC:

They don't come brighter than the new Krohn-Hile 5900 GPIB Programmability
Exclusive, Built-in Auto-Programmer 8 Internal Information Storage Registers
Wrequency Range: $100 \mu \mathrm{~Hz}$ to 5 MHz
Continuous Gated, Triggered, Digital Lin/Log
Sweep and Triggered Bu
All this for considerably less than comparable sunits

SERYIC.
With the 5900 you get the supreme standards of senvice and reliability peopie have come to expect irom tue Function Generators with frequency ranges of between .003 Hz to 30 MHz . Prices from around $£ 245$. 688 Other IEEE units from Krohn-Hite include the 6880 superb range of equipments for general purpose. communications and audio applications. o find out more, fill in the coupon.
And see why Krohn-Hite service is no secret

KEITHLEY

Keithley Instruments Ltd Boulion Road Reading Berkshire RG2 ONL
elephone (0734) 861287

The New FM/AM 1000swith Spectrum Analyser-we call it the SUPER-S
A portable communications service monitor from IFR, light enough to carry anywhere and good enough for most two-way radio system tests. The FM/AM 1000s can do the work of a spectrum analyser, oscilloscope tone generator, deviation meter modulation meter, signal generator wattmeter, voltmeter, frequency error meter-and up to five service engineers who could be doing something else!
For further information contact Mike Taylor

INSIST ON

 VERSATOWERBY PROFESSIONALSFOR PROFESSIONALS

The VERSATOWER range of telescopic and tilt-over towers cover a range of 25 ft to $120 \mathrm{ft}(7.5 \mathrm{M}$ to
36 M).

Designed for Wind Speeds from 85 mph to 117 mph conforming with CP3 Chapter-V, part 11

Functional design, rugged construc tion and total versatility make it firs hoice for telecommunications.

Trailer mounted or static, the VER SATOWER solves those difficult problems of antenna support, acces and ground level maintenance.

A programme of continuous produc development has led to a range o highly competitive prices. This coupled with our quality assurance scheme ensures that we maintain
the leader position we enjoy today.

VERSATOWER

THE PROFESSIONALS' CHOICE

STRUMECH

ORTLAND HOUSE, COPPICE SIDE ROWNHILLS, WEST MIDLANDS EL: (05433) 4321: TELEX: 335243 SEL
wW - 059 FOR FURTHER DETAILS

ATE DOESN'T HAVE TO COST YOU A FORTUNE
In times of economic stringency, you have to get the most in performance for the least in cost. Increasingly engineers are finding the use of microcomputers in "Do It Yourself" ATE systems the most cost effective solution.
Let CIL take the hit and miss out of doing your own thing.

Take a PCI 1300, Take a Test Fixture, Take a Desk Top Micro, and with a knowledge of Basic, configure your own test system.

CIL Microsystems Ltd

CIL Microsystems Ltd

 sure as well if you need it), all under software control, and at an affordable price. \qquad

Guess who builds this great

Logic Probe...YOUIGin, E11.92

With this easy-to-build Logic Probe Kit from GSC and just a few hours of easy assembly - thanks to our very descriptive step-by-step manual - you have a full performance logic probe.
With it, the logic level in a digital circuit is indicated by light from the Hi or Lo LED; pulses as narrow as 300 nanoseconds are stretched into blinks of the Pulse LED, triggered from
 either leading edge You'll be able to probe deeper into logi t. with the LPK-1, one of the better tools from GSC.

G.s.C. (UK) Limited, Dept.7Z Unit 1 , Shire Hill Industrial Estate, Telephone: Saffron Walden (0799) 21682 Telex: 817477.

P4000 Production
EPROM PROGRAMMER

This unit provides simple, reliabbe programming of up to 8
EPROMS simultaneously. It has been designed for ease of onerer use - a single program key starts the self check - blank check-
program - verify seauence. program-verify sequence.
Independent blank check $\&$ verify controls are provided along with mode, pass/ fail indicators for each copy socket and a sounder to
signal a correct key command $\&$ the end of a programmin Any of the $2704 / 2708 / 2716$ (3 rail) \& $2508 / 2758 / 2516$ /
$2716 / 252732$ $2716 / 2532 / 2732$ (single rail) EPROMS may be selected without hardware or personàility card changes
PRICE $£ 545$ + VAT. Postage paid
BULK EPROM ERASING

MODEL UV 141 EPROM ERASER

- 14 EPROM capacity
- Fast erase time
- Built-in $5-50$ minute timer
Convenient slideter
- Convenient slide-tray loading of devices Safety interlocked to prevent eye and skin damage

Suety iterlocked to preve
Rugged construction
MINS \& ERASE indicators
MINS \& ERASE indicators
Price f78 + VAT postage paid
MODEL UV14O EPROM ERASER
MODEL UV1U0 EPROM ERASER
Simiar to Model UV141 but without timer. Price $\mathbf{\varepsilon 6 1 . 5 0}+\boldsymbol{\text { VAT }}$
post paid
BULK EPROMS
 $\begin{array}{llllll}2708 & \text { (450ns) } & £ 3.90 & £ 3.50 & £ 3.10 & £ 2.90\end{array}$
Postage and Packing is included in all prices. ADD VAT at 15%,
All our EPROMS are manufactured by leading companies and are
fully guranted, bend
ully guaranteed, branded and to full specification.
WRITE OR TELEPHONE FOR FURTHER DETAILS OR SEND
Overseas customers, please telex or write for quotation and

GP INDUSTRIAL

ELECTRONICS LTD.
Tolephone: Totnes (0803) 863360 sales 863380 , Totnes, Devon
DISTRIBUTORS REQUIRED-EXPORT ENOUIRIES WELCOME
WW - 028 FOR FURTHER DETAILS

WIRELESS WORLD SEPTEMBER 1981

MONSANTO Half-inch + 1 Display High Intensity fi EACH set of 4 Ex 50 Common anode 14 Pin Dil			EX-MOTOROLA $5+5$ - WATT CAR STEREO AMPLIFIERS Complete and tested units. Medium and Long Wave. Supplied as two built units $15 \times 2 \times 2$ in.) with circuit and data. Includes pre- amp. Only 55 pair
	RECHARGEABLE VARTA 3.6 volts DEAC, M/AH 225 50 DRYFIT 6-volt, 4.5 amp.		

 DELIVERY foom stock - All post paid. Please add VAT. ExPont enguiries invited. TENRYE

01-723 1008/9
404EDGWAREROAD, LONDON W2 1ED

METALFILM RESISTORS 1\% Tolerance, $1 / 4$ Watt

ONLY 3p EACH
 ORION SCIENTIFIC PRODOUCTS LTD.
4 Golden Square, London, W. 1
ww - 034 FOR FURTHER DETAILS

The Professionals

VALVES,SEMICONDUCTORS \&COMPONENTS for:-

Communications, Displays, Radar, Computer,
Audio etc.
Hall Flectric Limited.
Electron House,
Orpington, Kent BR5 30 J .
Telephone: Orpington 27099
Telex: 896141
Telex: 896141
MIN DEF APPROVAL 0529/0531

Shure brings
intelligibility \& reliability to professional communications microphones
Experienced operators recognize that the audio quality of ne transmitter is limited by the quality of the input from the messages from Shure microphones. Shure microphones have been the overwhelming choice of professional communications users all over the world for over 30
years. Many milestone improvements devel years. Many milestone improvements developed for demanding
professionals are found on Shure microphones: ARMO-DUR ${ }^{\ominus}$ Case: Lightweight, immune to oir salt spray, sun, rust, and corrosion. Prevents RF burn!
"Million Cycle" leaf switch "Million Cycle" leaf switch: Just one of the crucial wear points TRIPLE-FLEX ${ }^{\oplus}$ Cable: Provides three or four times longer flity. TRIPLE-FLEX Cable: Provides three or four times longer flex life
than previously available cords on hand-held microphones CONTROLLED MAGNETIC® or Dynamic Transducer: The exclusive Shure-designed super-rugged transducers that
give excellent voice intelligibility and super reliability To improve your on-air intelligibility we suggest

Mobile Application		Fixed Station Application
SSB	$\begin{aligned} & 414 \mathrm{~A}^{*} \\ & 40 \mathrm{~A}^{*} \\ & 577 \mathrm{~A}^{* *} \end{aligned}$	444D 526T Series II
FM	$\begin{aligned} & \hline 414 \mathrm{~B}^{*} \\ & 50 \mathrm{~B}^{*} \\ & 577 \mathrm{~B}^{* *} \end{aligned}$	$\begin{gathered} 450 \\ 526 T \text { Series II } \end{gathered}$

General recommendation: Consult equipme.
manual for correct microphone inpedance.
"Noise-cancelling.

SHURE Hand-Held Mobile Mics

Communications Microphones by ...

Shure Electronics Limited, Eccleston Road, Maidstone ME15 6AU Telephone: Maidstone (0622) 59881

wireless world

Editor:

Doputy Editor: | PHILP DARRINGTON |
| :--- | $01-6613039$

Technical Editor:
GEOFF SHORTER,
B.SC GEOFF SHORTER, B.S Projects Editor: Projects ELitor:
MIKE SAGIN $01-6613500 \times 3588$ Communications Edito MARTIN ECCLES
$01-6613500 \times 3589$ Nows Editor:
DAVID SCOIE
$01-6613500 \times 3587$ Drawing Office Manager ROGER GOODMAN Technical Illustr
BETTY PALMER
Advertisement Manager 0B NiBBS, A.C.I.
DAVID DISLEY DAVID DISLEY
$01-6613500 \times 3593$ BARBARA MILLER
$01-6613500 \times 3592$ Northern Sales Northern Sales
HARRY AIKEN 61-872 8861 Midland Sales
BAIIL MMGOWAN
Bin 021-356 4838
Classified Manager
BRIAN DURRANT
$01-6613106$
JAYNE PALMER
$01-6613033$
RIAN BANNISTER (Make-up and copy)
$01-6613500 \times 3561$
Publishing Director:

View from the footprint

In giving his approval for an early start to satellite broadcasting in the UK, the Hom Secretary has opened a hive of questions emanding attention: who will provide th satellites, the earth stations, the domestic quipment, the programmes, the finance; ho will administer the service, what kin of programmes will it offer, how will the
public respond ... ? and so on. Many of hese questions are in fact being attended o with apparent urgency, and already at east two companies have been formed pecifically to provide and operate satellite systems.
of pressure behind this urgency is the British aerospace and electronics companies. They, understandably, are keen to exploit the jew technology which this type of broadcasung will make necessiry through for a British service would given them a good domestic base from which to launch hemselves into the world market. Th xisting broadcasters, BBC and ommercial, are also keen to go ahead. ontractors are now preoccupied with financial problems in their terrestrial broadcasting and have the prospect of upporting the fourth tv channel to face, potential of satellites as a new medium for advertising.
But in all these projections has anyone really stopped to consider the man in the ootprint, the prospective customer for So far, it seems, the pub
consulted in any effective way on what it thinks about the whole scheme. The Home Office has certainly published a report hrough HMSO (News, July issue), but they allowed only two months after publication (on May 19) for anyone to comment on it. Such a time limit is plainly idiçulous. It is no more than a token gesture towards public consultation -
another instance of the contempt with which governments treat electorates once
hey have used them to get into power (cf last month's editorial). Of course, th
who are directly interested - the who are directly interested - the groups, well-informed individuals and so on - will have responded smartly enough It will have been another "carve-up" mong the elites, while the majority mains almost unaware of what is going n.

A project of this magnitude ransmissions provide immediate coverag of the whole country - justifies public consultation on a large scale. At east a year would be needed to ensure that people were properly informed about the proposed service and the remaining nonths to give them time to think, discu equire all this time because the options available are not straightforward. For one thing, they depend on engineering options hat are not simple to explain. For example, because, as mentioned above, satellite transmitter provides national more efficient way of broadcasting a national service than terrestrial ransmitters, which could be reserved fo ocal and regional services. Then there is he question of how the available sound and television transmissions, with the possibility of including such newer evelopments as high-definition television, eriphonic sound and text information trieval.
The fact that satellite broadcasting is now possible gives us a fresh viewpoint for would be folly to throw away this oportunity because of indecent haste to exploit what some people see merely as a new commercial gimmick. After all, the dea of satellite broadcasting has been established long enough (since Arthur C Clarke's article in Wireless World of October 1945). Let us give it the chance used to the greatest advantage.

Acceleration feedback loudspeaker

Feedback from speaker cone reduces distortion and improves frequency response
by D. De Greef and J. Vandewege. Laboratorium voor Elektromagnetisme en Acustica, Gent, Belgium.
An economical and easily built acceleration-feedback loudspeaker is described. It consists of a two-way, passive-crossover speaker system housed in a compact 44 litre box, and a preamplifier to process the woofer cone-movement feedback signal. An ood power amplifier with a 120W r.m.s. can drive this system; no critical adjustments are required. Acceleration feedback is shown to improve considerably the system
response below 200 Hz . In this region distortion is reduced by a factor 2 to 5 , and the power handling capability of the box is increased by 50 percent. In spite of the simplicity of the design, a $\pm 3 \mathrm{~dB}$, was easily obtained.
A pair of 20 cm diameter Philips AD806rnMFB4 woofers was chosen for our purpose. These speakers have a built-
in piezoelectric transducer, and can handle 40W r.m.s. each. Electrically connected in series, and acoustically coupled, they displace the same volume of air as a single 25 cm woofer. However, they are mechanically stronger, and cone break-up occurs at
much higher frequency $(1250 \mathrm{~Hz}$ for the AD8067/WMFB4 instead of 200 to 400 Hz for a 25 cm woofer).
The coupling between the woofers forces them to behave as a system, showing
a single fundamental resonance. The 22 mm chipboard box shown in Fig. 1 has dimensions approach the 1.6: 1.25: 1 ratio required for a good distribution of the box resonance frequencies. The oblique partion successfully eliminates the lowest 260 Hz without deterionting the aroustic al coupling between both woofers. Figure 2 shows the woofer frequency response measured in an anechoic room at 1 m on axis, after filling the box competely with woofer resonance with a 0.7 quality a factor Each woofer cone carries a small printed-circuit board (Fig. 3) on which a piezoelectric acceleration transducer and ${ }_{3}$ f.e.t. amplifier are mounted ${ }^{1,2}$. As Reference to the low-frequency, far-field acoustic pressure generated.
The transducer output was recorded while driving the f.e.t. by a grounded-base 4 and 5 show the results: the stage. Fig speaker response is very well reproduced Further measurements showed the transducer output below 30 Hz to be de creasing, probably because of the tinite f.e.t. input impedance. Above 120 Hz , the
portant d
nclosure.

The enclosure in an anechoic room: front view showing the soft-dome midrange and
transducer output falls because cone move ments are increasingly damped by the sur rounding air. Above 1 kHz , cone break up and transducer resonances dominate. In the region of interest, the difference be tween speaker response and transduce signal can easily be modelled as a first
F̄eadback system
Feedback system
A source of inspiration was the Philips
MFB speaker system separated power amplifiers for low (40W) separated power amppifiers for low (40 W) which are incorporated in the box together with a number of filter stages. Woofer feedback is active (loop gain <1) in the 1 cy range.
quality succeeded in using a single good dio range, powplifier for the entire audio range, by carefully redesigning th feedback system as in Fig. 7. Any gooo power amplifier can be used, provided its stability's sake), and its power outpu doesn't exceed 120W r.m.s. Loop gain has to be adjusted, once and for all, to 12 dB a 100 Hz , a 20 per cent fault being hardly noticeable.
the 44 Hz low-pass filter in the feedback signal path. It eliminates distortion components of the piezo transducer in the
medium range, where transducer distor-

Fig. 2. Frequency response of the woofers, mounted in the foam-filled enclosure Fig. 3. Woofer construction with buit-in
acceleration transducer and f.e.t. stage.

Fig. 4. Acceleration transducer response
with constant speaker voltage applied.
 Fig. 6. Modelling the
response difference.
response.

tion (0.5 to 1%) exceeds the distortion of 4 Hz woteff $(<0.5 \%$ around 350 Hz). The
4 maximum allowable loop gain. Although he system remains stable for a loop gain as high as 22 dB , one should not exceed 12 dB : a drive signal for the power amplifier, causing severe distortion, long settling times and possible destruction of the power stage or the speakers.
The filter stages a, b and cin Fig. 7 form loop transfer characteristic. Only first-

order and low-Q (<0.8) second-order filters were employed to avoid any ringing or cuitry shown in Fig. 8 is incorporated between the preamplifier and power stage of an existing audio amplifier, and contains all the signal-handling stages required. Except for the connexion of one LM381 in-
put amplifier as part of the transducer f.e.t. cascode stage, its design is very conventional. The 12 dB loop gain adjustment R should be set at about $22 \mathrm{k} \Omega$ for a 34 dB power amplifier gain. The whole is fed by Fig. 7. Block diagram of the acceleration
9. A relay shorts the power amplifier in aror ten seconds after switch on, to avoid switching transients. As Fig. 10 shows, the power-amplifie servo-system input level, is a complement of the woofer frequency response, as determined by the servo loop. Because audio programme material seldom contains strong very low frequencies, this bas
boost does not require excessivi levels. However, the box must be carefully sealed and filled with polyether foam in order not to reduce the woofer's low-frequency power-handling capabilities. A the servo loop is operative as low as 12 Hz , when reproducing discs: the filter time constants, however, produce an increasing feedback level for those very low frequencies. Subsonic cone movements are strongly damped, obliging the voice coil to system even for higher drive levels. This raises the processable power level, for typical audio programme material, from 80 to about 120 W r.m.s. Figure 11 shows signal is applied to the box: closing the feedback loop dramatically decreases low frequency distortion.

Fig. 8. Filter and feedback stages.
,

All R's $1 / 1 / \mathrm{W}, 5 \%$
C's MKM if not electrolytic
NOTE: The relay opens 10 second
after mains swith on To power
amplifier or relay

Fig. 10. Power-amplifier drive signal with
constant servo-system input voltage.

ig. 11. Total harmonic distortion of the speaker system with and
for 25 W sinusoidal drive.

Crossover

With constructional simplicity in mind, we searched for a good amplitude and tran sient waveform response 4 . Ordinary con stant-resistance filters showed excessive combinations of first-order and low-Q second-order filters proved to be acceptable acoustically.
Duifferent three-way combinations were built, in which or a Motorola piezo AD0141T8, was used with a 4 kHz second crossover frequency. Main problems were tweeter resonances in the 1 to 4 kHz re gion, causing poor squarewave response. Moreover, thermal modulation of the
tweeter sensitivity was observed at higher drive levels: due to the short thermal time constants (around two seconds for a 2.5 cm dome tweeter), voice coil resistance can change appreciabl
strong transients ${ }^{5}$.
A much better result was obtained with a 5 cm Philips soft dome midrange, type AD0211@ SQ8, in a two-way configuration
with 900 Hz crossover frequency This speakers has a 20 seconds thermal time onstant. Its high-frequency response is iter stage c of (approximately a first-order pole at 4 kHz) in the crossover network of Fi at 4 kHz) coils are wound on Siemens ferrite drum cores, thus avoiding excessive wire length and resistance. The high-pass section contains no electrolytic capacitors, as these were inaccurate and often inductive at higher frequencies, and parallel combina series) were used, each capacitor being able to handle 400 mA of current. Low inductance resistors are also to be preferred. Finally, Fig. 13 shows the anechoic room amplitude response of the system Although these curves can stand co parison with much more complicated (and expensive) setups, the most impressive re sult cannot be written down: a very sharpcut transient response even at high levels, of the human voice.

Editorial note
The drive units are obtainable from Philips Spares Division, 604 Purley Way, $£ 22.70$ and $£ 17.25$ for the woofer, 2 in dome and tweeter respectively. Siemens MKM capacitors are stocked by A. Marshall (London) Ldt, Kingsgate House,
Kingsgate Place, London NW6 4TA:

References

1. H.M. Godiij, Motional feedback system 2. Philips sonant, Electuur, 1973 September
pp. $926-931$. pp. 926 -931
2. Jason C
3. Jason Christophorou, Low frequency loud-
speaker measurements with an accelerometer, speaker measurements with an accele
4. P4h Convention AES, preprints. 4. Philip Vanderlijn, Auditory cues in stereo 5. P. Skritek, H P. 5. P. Skritek, H. Pichler Extended application
of TIM test procedures, $64+$ Cond preprints. Kingsgate Place, London NW6 4 oblique partition. Box must be completely
filled with faam.

Consumer video records

There is still no agreement on a single standard for video disc systems

Lack of agreement on a single
standard for consumer video discs has been no barrier to the completion of many other agreements, but
so obviously in the consumers' so obviousiy in the consumers. Almost
interests as a single standard. every interested company has an greement to produce more than one kind of video disc system.

The first of the video disc systems to be demonstrated was the laser optical disc originated by Philips a decade and £75 mil $2^{1 / 2}$ years back. Then came RCA's grooved capacitance disc, the product of 15 years $\$ 50$ and $\$ 200$ million, put on sale six months ago. And third there is Matsushita in the form of JVC looking to repeat its HS video cassette recorder success wis rooveless capacitance disc, to go on sale USA and UK. Other systems, such as the optical transmissive of Thomson-CSF, are not destined for the domestic consumer market. So w Ph?
Philips may have been first to publicly how their disc and player but they ceranly haven't made most noise. That honour goes to RCA who, ever since the "go" decision for the launch of Selectavipress with announcements of their licensing deals, some hardware, most software. First news was that RCA had concluded a licensing arrangement with CBS to make and distribute Selectavision "capacitance natural choice: it had pressing plant that could be converted, falling jaudio record sales, a record distribution system, and wanted to get into video discs with the east risk. North
orth American marketers say that the chances of selling a particular brand to a household are much better if a commitment already been shown to that brand, tv set. And the owners of a product are likely to listen to what its makers recommend. So with the biggest share of the colour tv market (21\%), RCA thus hopes or the biggest share of the video disc market. So naturaly their first target fex biggest tv brand - Zenith (20%). News of an agreement with Zenith came three months after the CBS deal and covered the factor of players and discs and ant exchange

of patent rights
who are co largest US tv set maker is GE, ology. The next lorest sections of that market are retailers' own brands and the apanese makers. All three "own-brand" ames, Sears, Ward, Penney, agreed to colour , representing over 11% of the Sharp, Sanyo and Toshiba agreed to CED in the USA (but VHD in Japan and maybe aso optical players), whose share comes to ver 6\%. Remainder of the US makers are either in the optical group (Magnavox, Philips with 12%) or committed to VHD (JVC, Ouasar Panasonic, about 8\%). A total of nearly 60% for CED.
There have been no agreements announced to market CED in Japan. Which suggests this was that sell in the US to adopt CED rather han VHD.
But such licence agreements do not always mean very much. As an RCA spokesman admitted: "licences only bestarts". As an example, out of 20 CED licensees in Japan, one is Pioneer, who are heavily committed to the optical system, and another is Sony, who already have an exchange agreement with Philips and de-
clare no interest in consumer discs. However, considering the momentum that CED is achieving there is every reason for supposing that manufacturing has begun Five weeks aft

Mock-up or the real thing? Photograph recorder that can playback one of 15,000
images in under halfa second.
ing that CED had achieved "the most successful introduction of any majo electronic producc. To meet a stronger than expected demand RCA say they are increasing the number of presses and raising this year's production target for discs from two to three million, and expect to stamp discs and players could be about $\$ 7.5$ billion by 1990 they say.
But the bulk of the RCA announcements were about licensing deals for programmes, and involved separate deals with acquired rights to 85 Paramount films, 20 Rank, 24 Disney, 100 United Artists, 12 Chaplin, 7 Presley, and 11 Bond films Charlie Brown programmes, music and show productions, NBS "specials", which will doubtless impress the "average family"; because it was designed for precisely that market. The opening catalogue had 100 titles, half priced at under $\$ 20$, the rest at between $\$ 15$ and $\$ 28$. This summer 26 new titles were added, a further 25 due
this autumn. From next year 120 new titles a year will be added, say RCA "to maintain excitement and interest
Will success in the programme catalogue The answer may in part depend on how
many of the agreements being reached are exclusive. What seems to be happening is
that the vast majority of agreements are non-exclusive - RCA named only two items as exclusive. Nevertheless, in a situation as competitive as this one must expect features to be sought on an exclusive basis, tiating rights to overseas material is an area here video disc companies are very, ac ive. RCA have formed joint companies in various countries; those announced are with Beta/Taurus in Germany, Precision well as a joint company with Columbia Pictures to trade in overseas rights. In proclaiming its 26,000 sales RCA could be said to be gloating when they
compared this with an estimated 30,000 sales for the optical system over two years. Optical system protagonists argue that optical player sales had been held back as result of difficulties in supplying discs. Philips contest the estimated figure, quo
ing sales of 40,000 at the end of 1980 ing sales of 40,000 at the end of 1980 pare with a laser player; limitations of mono sound, no freeze-frame facility, limited stylus and record life go with this unashamedy mass-market machine. And price differential is substantial: $\$ 750$
the optical player and $\$ 499$ for CED. The optical disc system, now called La servision and sold by both Magnavox and Pioneer, is set for UK launch later this year" with a promotions budget of $£ 1.5 \mathrm{~m}$ VCR (£499?). Details are largely as previously reported (see Berlin show reports, especially 1973 and 1975), the major extension in recent years being adoption of time. This is achieved by cramming more than two fields per revolution as the track radius increases and motor speed decreases proportionately. The constant angular ve ocity mode, with its facility for reversing, speeding up, slowing down and freezing
motion by track jumping, gives only half an hour playing time a side, and is now distinguished from the long-play version by the name "active play". And though the players will accept both kinds of servision you don't get both at the same time.
In addition to the Blackburn and Eind hoven pressing plants of Philips, three Gern discs-Sonopress Bertlesmann and sion discs-Sonopress, Bertlesmann, and
Bavaria. In the USA discs are made by 3 M and Discovision Associates (MCA and BM), while in Japan Universal-Pioneer will make discs for the consumer market The VHD (video high marke less capacitance disc group may be more willing to exploit interactive instructional programmes than RCA. Matsushita's chief evenue earner is now the video cassette recorder and to protect that position they
say VHD should offer something the cassette recorder can't. According to a recent

First model of RCA video record player features rapid access at 150 P normal speed with muting, visual search at $16 \times$ normal speed by
groove jumping and is priced at groove jumping and is priced at
\$499. rap programmes, aimed at
"average family", sell at $\$ 15$ to $\$ 28$ "average family", sell at $\$ 15$ to $\$$ each. CBS as well as RCA are
expected to sell records in the expected to sell records in the UK,
but a PAL version of the plaver has yet to be demonstrated.
report in TV Digest, Matsushita have enough films for January's US launch (from United Artists, MCA, EMI) report edly 55% of their first 76 items, with the remainder classed as special interest, i.e music pre instructional discs. Average pric will be $\$ 25$. In the UK Thorn-EMI is spending $£ 5 \mathrm{~m}$ on two disc production sites. A recently acquired factory at swindon will produc EMI Electrola, Köln. The new factory will be operational by January, in full pro duction by April with 100 employees and so ready for the UK selling in June. Thorn say combined output will be three million
discs, and that could be doubled by 1983 . The process appears to differ from RCA mastering in at least one respect - a laser cutting head scribes $0.3 \mu \mathrm{~m}$ deep pits into a
coated glass blank This makes the process vibration-sensitive and Thorn-EMI sa choosing a site sufficiently free of vibratio has been a problem. Sequential electro forming leads to a metal ma At least thirteen companies have de clared their support for VHD in Japan Akai, General, Hitachi, Mitsubishi, NEC Sansui, Sanyo, Sharp, Toshiba, Trio Yamaha, in addition to the two Matsushita companies. Many of these will produce players for more than one system, and But a large part of the have licences. UK operation lies in the JVC participation with Thorn-EMI. They are both counting on Thorn's rental outlets - nearly 1600 of them - that have been instrumental in the undoubted success in bringing VHS to the

Field arrangement on two kinds of optically tracked disc. "Active play" half-hour type has increased playing time of long-play version is the loss of slow, fast and still-frame options (right).

Optical video discs carrying education programmes could
be used for interactive teaching be used for interactive teach programmes tailored to
individual needs by linking record player to microcomputer
(both beneath tv set) with cassette program and separate
ext display. But teaching and texining programmes - for
tran which the features of slow motion, freeze-frame and
reverse play are ideally suited - will not be available initially.
Available for sale in the U.S. early next year, Sharps' VHD ormat video record player
cludes "video search," enabling speeded up viewing
by either 9 or 120 times normal by either 9 or 120 times normal
speed; frame-stop; frame-byspeed; frame-stop; frame-by
frame advance in either forward
reverse; variable speed or reverse; variable speed control from $1 / 8$ to five times
normal speed in either forward ormal speed in either forward
or reverse; and pause control. In the UK players may turn out o be dearer than the $£ 3$

Secret of capacitance discs

To make a video c.e.d., signals with iden ification codes inserted in the vertical
lanking intervals feed a half-speed cutter made of a diamond stylus and driven by a
piezo element (optical and electron beam piezo element (optical and electron beam This cuts a v-shaped groove into a thin layer of copper coated on a heavy alu
minium disc. Electroplating with nickel minium disc. Electroplating with nickel
and peeling off the coating a few times and peeling off the coating a few times
provides a number of nickel masters (nega ive moulds). They are returned to the
dectroplating bath to generate multiple ositive nickel moulds which are them stampers for disc pressing. Two stamp s mounted on a press - one for each sid v.c. compound into a disc. on cooling he discs are washed, rinsed and dried and 20 mm coat of lubricant is sprayed on t prolong stylus and disc life.
Experiments conducted a decade ago at
RCA showed that the resistivity of a p.v.c./p.v.v.a. copolymer as used in audio records was too high for a conductive
record, at $500 \Omega \mathrm{~cm}$. Lower resistivity could then only be obtained with polythene-based compounds but they were oo soft and scratched under a sliding sty-
us. So coating of metal, styrene and yil
. lus. So coatings of metal, styrene and oil
had to be applied to give the disc its
and conductance. But when problems with
conductive coatings (adhesion, environmenconductive coaings (adhesion, enent) began
tal exposure, complex equipmer
to mount the search for a new comound was reneaved for a new comdiscovery of a low-resistivity carbon black gether with a suitable p.v.c. copolymer.
The carbon loading level was the tricky The carbon loading level was the tricky
thing to get right, affecting not only resisthing to get right, aflecting not only pesical
tivity but also melt viscosity, physial characteristics - especially brittleness and resistance to scratching, warping - and surface equalty.
Electron tunneling theory suggests it is the average width between particles or agglomerates that determines conduclity rent is an exponential function of gap width). Detailed investigations showed resistivity to be a steep function of carbon
content which hadn't levelled off at resistivities as low as $2.5 \Omega \mathrm{~cm}$, where loading level becomes impractical (20\%) due to
high sheer stress from particle-to-particle high sheer stress from particle-to-particle
contact.
Detailed analysis of the properties of filled polymer composites with a loading
level of 15% showed its suitability - exlevel of 15% showed its suitability - ex-
cept in respect of brittleness. But RCA say "proprietary" additives can modiry this to enable the discs to withstand normal handling and drop tests.
In any case, the specification for disc warp i.e. a maximum-peak-peak warp of 0.5 mm after 48 h at $55^{\circ} \mathrm{C}$ cannot be met by audio-type p.v.c./.p.v.a. systems; but is
easily met by carbon-filled resin systems of propylene-vinyl chloride copolymer or
p.v.c. homopolymers. It is the success of p.h.c. honopopoymers. It is the success of
this conductive disc that gives CED
EED perhaps its biggest selling point against
optital pressings - that records can be opuial pressings - that records can be
made on exising presses. But as the filled
resin is much stiffer it is more difficult to resin is much stiffer it is more difficult to
form by injection mouldingg therefore
compression moulding has to be used.

Microcomputer tester

A simple but versatile fault-finding aid
by Tony Cassera

signed consisted of an 8080A microprocessor, 8224 clock, 8228 bus controller and, of course, r.a.m., r.o.m. and various othe components.

Signals

To aid the explanation, signal names have been used. The active state of each signal is indicated by suffix H or L , for active high and low respectively, the first time the signal name is mentioned. The following
seven signals used by the tester are standard for an 8080 -based system; other signals peculiar to the tester will be described as they crop up. HOLD H, applied to th 8080, stops the processor and puts its data and address buses into lets the clock generate the RESET H sig nal which in turn sets the processo program counter to zero. When RESIN is removed, the program starts from zero STSTB L is a status strobe generated by cycle. RDYIN H is synchronized with the clock to give READY H to the processor BUSEN L enables the tri-state output buf fers of the 8228 ., , hen this signal is high, pedance state.

Functional description
C.p.u. mode. A three position switch with settings marked disable, jump and run is connected to the HOLD and BUSEN sig nals of the system, see Fig. 1. In the disable microprocessor and two enable signals, EAS H and EDS H , to the address and data switch buffers respectively. The teste has control of the address bus in this mode.
When the HOLD signal is not applied to the

Fig. 2. Circuits of the tester used to produce signals for read, write, select and reset
functions. The NAND gates connected flip-flops are used to debounce the push switch contacts. RESIN is debounced within the 8224 clock i.c. of the board under
test. Apart from the timing resistor of the monostable, all resistors are $1 \mathrm{k} \Omega$.
microprocessor but the data bus is held in its high-impedance state by the BUSEN signal. After resetting the microprocess runs and advances the program counte. the form of 00 from the bus controller. A 00 is the no-op code the microprocesso does not act and the program counter goes on incrementing until the address switch setting and the bit pattern on the address signal goes low and the microprocesso clock stops at the selected address.
In the run position the BUSEN signal is low, i.e., active, and other conditions ar the same as those in the jump position. cutes whatever it finds in the program. Address bus. Sixteen single-pole switche are used to write data onto the address bus through tri-state buffers. The enable lin to these buffers, EAS, is controlled by the c.p.u. mode switch so when he c.p.u.
switches are only active when the switch is in the disable position. Four hex-adecimal-input seven-segment display units are used to monitor the bit pattern on to sixteen address lines. The address lines prevent excessive loading.
In disable mode correct functioning of the address and data buses can be checked by reading out known data from r.o.m. coders one or two words can be read from
each memory i.c. used. Extensive r.a.m checking is not possible but data can be locations to check the chip select function. and the ability of the r.a.m. to retain data. In the write mode, see Fig.2, data can be written into memory for use when the rogram is run.
The address switches are also connected our comparators which are used Data bus. A set of eight single-p switches is used to write onto the data bus through tri-state buffers. These buffers only pass the data on the switches to th or jump positions and when the data bu switch, Fig. 1, is in its enable position. The resulting signal controlling the buffers is called EDS H. Two hexadecimal-input displays are used to monitor the data lines puts are buffered. pus are bufled. the address lines is compared with the settings of the sixteen address switches b a thirty-two input comparator made up of four eight-input comparator i.cs. and a
four input AND gate. The output of the comparator is fed into an AND gate alon with the STSTB signal from the 822 clock of the board under test. The resulting signal is fed into a NAND gate along with an enable signal from the breakpoint
switch to form a signal called COMPARE L. One of the four sections of the compar tor is shown in Fig. 1.
Breakpoint. A breakpoint is an address a which the processor will stop. Using a sensible choice of breakpoints, it is pos sible to reconstruct the path of the program under execution. When a
breakpoint is set on the address switches, the c.p.u. mode switch set to run and th breakpoint switch to enable the program should run and stop at the breakpoint set The address display will read the data on sought by resetting the address switches and pressing the continue switch.
The breakpoint function is outlined in Fig. 1. When the breakpoint switch is in the enable position the set signal is re-
moved from the control flip-flop but the device remains set. RDYIN is high so the processor runs. When a comparison between the address data and address switch settings is found the COMPARE signal resets the flip-flop and RDYIN goes low to
stop the processor. Pressing the continue stop the processor. Pressing the continue the processor continues to the next breakpoint.
Single step. When used in conjunction with a program listing the single step mode can often reveal the obscurest of system faults. Single cycle stepping is used as op-
posed to instruction stepping. The address bus is constantly displayed so that when calls are executed the successive outputs of the stack pointer can be monitored. Execution of the instruction code on the display
takes place when the step switch is takes place when the step switch
pressed. Although single step mode is use ful it is also slow so as much use as possible

Operation of the single step section of breakpoint section. When that of the breakpoint section. When the single step
switch is enabled the set signal is removed witch is enabled the set signal is removed
from the control flip-flop but the i.c refrom the control flip-flop but the i.c. re-
mains in its set state. RDYIN is high so the processor runs. After one cycle STSTB is returned from the board under test and the flip-flop is reset resulting in a change in
state of the RDYIN signal so the processor tops. Depressing the step button initiates the next step.
Read. When the read button is pressed, Fig. 2, data on the address switches is read and shown on the display. The c.p.u. mode switch must be in the disabled position and the data switches off. In the read
circuit of Fig. 2 a flip-flop is used to debounce the switch contact. The output of the flip-flop goes directly to the board under test and is connected into the read ine of the processor using an OR gate. Write. Provided that the data bus switch is data switches is written into r.a.m. at the address set on the address switches. The write signal is produced in the same way as the read signal described in the preceding paragraph, see also Fig. 2
Select. In the system for which the tester by a DEVICE SELECT signal. This signal was generated by a decoded address bus signal along with the i/o pulse generated by he 8080 when executing an IN or OUT instruction. The tester simulates the i/o pulse from the processor, Fig. 2, using a and a monostable multivibrator to produce a pulse of around one microsecond. This pulse is fed into the microcomputer $i / 0$ line again using an OR gate.
The address switches determine the dethe decoder reads the port number in the high byte, i.e., device number 3 may need to be addressed as 0303 . When the select button is pressed the data on the data
switches is clocked into selected output switches is clocked into selected output
ports. It is not possible to verify data read from input ports but this feature could be added by incorporating an eight-bit latch on the data bus of the tester.
Reset. On pressing the reset button, Fig.
2, the RESIN input of the 8224 clock i.c. goes low. Debouncing of this signal takes place within the 8224 so a simple switch will suffice in this case, Fig. 2.

Connection

Some forty connections have to be made system. In the system previously described, the c.p.u. board had a built-in test connector but not all boards will be so provided. The simplest way to make the connections is to connect single test clips
to the legs of the i.c. packages, picking up to the legs of the i.c. packages, picking up
the signals one by one. This method is, however, tedious and errors can easily be made. Multi-way test clips with test leads
soldered in position are much min soldered in position are much more convenient.

If the processor is mounted in a socket a This test jig has the necessary test leads soldered to its pins and is mounted pick-aback fashion in the processor socket. The microprocessor then pluss into the test jig.
Care must be taken when connecting the Care must be taken when connecting the
signals HOLD and RDYIN (or similar signals) to the tester. On the boards for which the tester was made there were spare OR gates in these lines which were held high with external pull-up resistors. Open collector outputs in the tester supplied
these gates with satisfactory signals. If there are no spare OR gates available on the board to be tested, an alternative is to wire OR the functions if suitable open collector lines can be found.
To stop clamping of the test signals priate leg of the i.c. may be bent outwards so that it does not fit into the socket. If sockets are not used, either the pin of the
i.c. or the associated track .c. or the associated track on the p.c.b. been found. The sixteen address line and
eight data line connections don't create a problem as they are connected via tri-state buffers.

Modifications

A single pulse is difficult to see on an oscilloscope so I added a 1 kHz oscillator to
the device select circuit as an alternative to the push button.
A small r.a.m. was considered into An extra circuit for directing the written. to the starting address of the memory would be required. Data entry using
switches is tedious so a hexadecimal keyswitches is tedious so a hexadecimal key-
pad was envisaged for loading data. At this pad was envisaged for loading data. At this
point I felt that these modifications were too complex and decided that if such features were needed an entirely new design
would be required would be required

Literature received

Applications manual on analogue-to-digital and
d-to-a converters is published by Pascal Electronics. It is mainly a discussion of specification terms and error sources, with additional
information on sample-and-hold amplifiers and circuit layout. Copies from Pascall Electerronics Thames, Hiddduse, Green Street, Sunbury-on-

Two brochures from Spectra-Physics present deneral information and more specific product lasers. They can be obtained from Spectra-Phy-
ics Ltd at 17 Brick Knoll Park, St Albans sics Ltd at 17 Brick Knoll Park, St Atbans,
Herts. AL 5 UF .
WW02 Should anyone wish to make a cardboard model
of the Z-LAB 8000 development system, Zi-
log's new brochure on the equipment provides og's new brochure on the equipment provides
he means of doing so, together with a short description of the system itself. Modelmakers hould write to Zilog (UK) Ltd, Babbage
House, King Street, Maidenhead, Berks. SL6
DUW.
1DU. WW403
Advice on the range of Arklone flux removal
solvents and cleaning plant is presented in brochure, available from ICI Mond Division,
Dept P, PO Box 13 , Rucorn Cheshire
bept P, PO Box 13, Runcorn, Cheshire. WWW404
3 M have produced à brochure on the Scotchflex rrange of ribbon connectors and the jacketed
and shielded flat cable, recently introduced. and shielded flat cable, recently introduced. Electronic Products Group, 3M United
3M Hise
 Small tools to assist in the assembly of compo-
nents onto printed-circuit boards are describe nents onto printed-circuit boards are described
in a booklet from Vero Systems (Electronic) in a booklet from Vero Systems (Electronic)
Limited, 362A Spring Road, Southampton,
SO9 5 WW .
Application note from Norsem describes the use
of s.c.ss, diacs and trias in of s.c.rs, diacs and triass in the switching of
inductive loads. Copies can be otrined former Norsem Powers Products Division, Leved 1, The
Civic Centre, Hartlepool, Cleveland. WW 407

Brochure from Burndept describes a new u.h.f. .m. transceiver for $420-470$ links, to Home
Office spec. WW45T. Leaflet can be had on application to Burndept Electronics Ltd, St Fi-
delis Road, Erith, Kent DA8 1AU. WW408 Catalogue of components, tools and hardware can be obtained from HB Electronics Ltd,
Lever Street, Bolton, Lancs BL 6 BJ. WWF 409

Specifications and application data for the range
of ERG wirewound power resistorss $\{0.3$ ohms of ERG wirewound power resistors , (h. . 3 ohms
to 100 kilohms) is available from ERG Compo10100 kilohms) is available from ERG Compo-
nents, Luton Road, Dunstable, Beds. LU4 5
4LJ.
Short catalogue from Bourns gives brief details of a range of precision potentiometers and
urns-counting dials, together with a number of fesistor networks, attenuators, mith a numboranser of ers and microinductors. Catalogue from Bourns
Electronics Ltd, Hodford House, $17 / 27$ High
Street, Hounslow, Middx. TW 3 1TE.
W411

Voltage-controlled filter

In the article by A.A. Thomas in our June issue,
"Filter design with voltage-controled sources" "Filter design with voltage-controlled sources" a correction is needed to Fig. 5 on page 81 . The
negative plate of capacitor C, should be connec-
ted to the common rail and not to the -15 V negative plate of capacitor C_{7} should be connec-
ted to the common rail and not to the -15 V
supply as shown. Also equation (10) defines ω_{0} ted to the common rail and not to the -1 ω_{0}
supply sa shown. Also, equation (10) defines ω_{0}
and not ω as shown. Finally, in the Appendix, and not ω as shown. Finally, in the Appendix,
the equations for cut--ff frequency, low-pass the equations for cut-off frequency, low-pass
and high-pass, have a round -left-hand-bracket omitted directly before the first occurrence of
othe identity α^{2}, reading from the identity α^{2}, reading from left to right. (See
also comments in a letter to the editor, this $=$

Morse decoding program

 The sudden-interference handling capability ofthis program described in the February issue
was affeceted by a small error in line 0 C 50 of the machine code. Instruction 8 CC (ADC A,H)
should have been 84 (ADD A,H). This error
does not aftect does not affect normal operation of the progran due to interference

WIRELESS WORLD SEPTEMBER 1981

IETMEERS TOTYHE EDNTTDR

AMERICAN CB NOT HOUSE TRAINED I could not help but note the item "House
trained c.b." in Sidebands of your May issue. I tained c.b. in sidebands of your May issue.
assume that your "house trained" means the
same as our "house broken" and genaly same as our "house broken" and generally con
sists of training a pet dog, cat, or other animal to sists of training a pet dog, cat, or other animal to
stay clean in a house and to use the grea stay clean in a house and to use the great
outdoors as a bathroom. I hope for your sake that you can establish a c.b. system that will no
offend your ears in the same way that a dirty pe offend your ears in the same way that a dirty pet
will offend your nose. We have failed to "house break" our American c.b. system.
"Mixer" iokes about American c.b. slang. I
doubt if he's heard much. It's not funny; it's filthy, rotten, degrading and totally uncalled for. He says that slanging should evolve naturally. I agree, but our evolution was more of a gradua
degradation. If this is what happens naturally, degracation. If this is what happens naturally,
suggest that you take steps to prevent it. Maybe if you learn from our mistakes, we might be able to adopt your methods to clean up American
c.b. In the meantime, I won't have c.b. in my vehicles or my house. Thank God, I'm a ham! Martin L. Shapiro, WIYSA
Needham
Mass., USA

NVENTION OF

STEREO RECORDING
Reg Williamson of Norwich brought up the
subject of the invention of the $45 / 45$ stereo disc recording system in June letters. He makes mention of the issue of some recordings by Bell Telephone Labs of experimental work done disc recordings made at that time.
Some of the history of the $45 / 45$ stereo system
has been given in my paper published in the has been given in my paper published in the
April issue of the $\begin{aligned} & \text { ournal Audio } \\ & \text { Eng. Soc. and in }\end{aligned}$ April issue of the
giving this talk at several meetings the Blumlein question always come up. My answers to these questions are as follows:

1. My first exposure to the Blumlein matter was by the IRE paper in the October 1958 issue written by Frayne \& Davis.
2. My patent (USA Patent No. 2,114,471) was our best single groove stereo records were made in 1934 and one of these was lent to the BBC in binaural recordings made in 1928 .
3. The reasons for the delay in filing were pri-
marily due to the financial depression of the marily due to the financial depression of the,
1929 period and the lack of interest by Victor, 1929 period and the lack of interest by Victor,
Columbia and other Bell ysstem licensees in promoting a system which "required two loud-
speakers when people could not afford to buy promoting a system wie could not afford to buy
speakers when people
one loudspeaker." This lack of interest seems to one loudspeaker." This lack of interest seems to
have been reflected in the delayed action by the have been reftected in the delayed action by
Bell Labs Patent Department. In any case we did not publish the single groove stereo system
at that time. But neither did we publish our long at that time. But neither did we pubish our ong
playing record of 1929 which was a 10 in record playing record of 1929 which was a 10in record
to replace the 16 Vin Vitaphone Talking Picture to repace the
record. Other unpublished work was on gold
sutering electronic heating of lastics, the air sputtering, electronic heating of plastics, the air
advance hall, etc. The essential telephone was advance hall, etc. The essential telephone was
given F eference during the shortened work week.
4. Binau
my mind, particularly single groove systems my mind, particulurly single groove systems
such as the multiplex system applied for in 1929
and issued in 1933 as USA Patent No. $1,910,254$. This speaks of two or more channels in one groove. This patent application also
mentions the moving coil pickup, now also bementions the moving coil pickup, now also be-
ing "reinvented," "ppplied for in 1229 and issued
in 1934 as USA Patent No. $1,981,793$. 5. The work in developing a single groove stereo
recorder was time consuming and difficult in recorder was time consuming and difficult in hannels. My recollection is that the two-channel recorder by linking two rubber line re-
corders started about 1928 and it took several years to be considered adequate.
5. In any case, by the time that Frayne "rein-
vented" the $45 / 45$ system our USA Patent pired. Frayne should be given credit for the success of the $45 / 45$ system which we were not able to "sell" in the early 1930s A. C. Keller
Bell Laboratries

Murray Hill, New fersey, USA

WAFER-SCALE

NTEGRATION

he novel computer architecture described by 1. Catt it your July issue has some interesting neurology.
It is tacitly assumed by the general public, nost engineers and some psychologists that. here is an analogy between computers and the
uman brain, so that when we finally produce a powerful' enough computer, a suitable program will enable it to 'think' like a man. I
suspect that this analogy offen affects the way suspect that this analogy often affects the way
hat psychologists frame and interpret their exhat psychs.
The unsatisfactory nature of this supposition can be demonstrated by comparing the facility
with which brains and computers perform partiwith which brains and computers perform parti-
cular tasks. The conventional computer can answer questions requiring mathematical manipulation and iterative procedures ("What is the
thirteenth root of pi") orders of magnitude more rapidly than a human. For questions involving associative memory ("Where have I noticed that smell before?", how
factor nearly as great.
Mr Catt's architecture may produce machines
with a performance more similar to the with a performance more similar to the human brain. By enquiring further, it is possible to find
more points of likeness. One feature of the brain which has aroused comment in both popular and learned journals is that it has never been possible to find (physical) areas of the brain
corresponding to particular memories; excision of one piece of grey matter will not lead to loss for memory for all events which happened on June 21 st or all recipes using eggs. Instead, a
more general degradation of function and memory occurs. The brain has been likened in this respect to a hologram, but it may be more
useful to compare it with Mr Catt's distributed useful to compare it with Mr Catt's distributed
processing and content addressable memory. The essing ald and content artial restitutution of memorction
The which occurs as neuronal paths re-form after rain damage would then be equival
reformation of a spiral' at switch-on. From an engineering point of view, the construction of computers more analogous to the
brain offers some attractive, if rather remote, brain offers some attractive, if rather remote,
possibilities. Much scienuific and programming
effort is directed towards programing ort is directed towards programming
machines to perform tasks which humans
perform with relative ease; this endeavour perform with relative ease; this endeavour
might be rewarded with more success. Finally, It might perhaps prove possible to make machines which 'learn' in the way that we do, and so realise the 'thinking' computer Tim Thorpe
Cheltenham
Chelten
Glos.

TELEVISION FOR

NO-SIGNAL AREAS

I read with interest the excellent article in your May issue by J. M. Osborne on active deflectors
for tv in "no go" areas. The system is very imilar to one I installed for a friend in Scotand
wo years ago. I think there are a few points M. wo years ago. I think there are a few points Mr
Osborne failed to mention which I think might help others and these are as follows: 1. Larger aerials on the re-transmit and bottom-
of-hill receiving station would give approx $6-9$ of-hill receiving station would give approx $6-9$
dB extra received signal tor extreme range cases. They would also so have a narrower beam waidth, so minimising interference with other hous
which may be receiving a direct signal. which may be receiving a direct signal.
2. It is best to feed a.c. up the supply cable about 24 volts and use a Radiospares or similar regulator at the top. This eliminates voltage
drop adjustments at the bottom end, prevents electrolytic action on the wire should it become slightly damaged and makes joining of the wires
if they ever become cut accidentally if if they 3. It might be easier to use standard outdoor inductive splitters instead of 50 -ohm quarterwave matching sections.
It is always useful
It is always useful when considering what
amplifiers to use on the complete system to know what level of signal you are receiving from he main aerial. Without a field-strength meter, this can be done by gradually reducing the sig-
nal into the portable test set until the picture ust shows noise i.e. just snowy. This level on
most portables is about $200 \mu \mathrm{~V}$. One has then most portables is about $200 \mathrm{H} V$. One has then
only to count the dBs of attenuators at the rear only to count the dBs of attenuators at the rear
of the set, increase the $200 \mu \mathrm{~V}$ by this amount and you have got your approximate signal level.
Mr Osborne shows only one pre-amp driving Me $1 V$ amplifier but in our case we had to have wo: one standard 20 dB masthead amplifier into ne 20 dB 500 mV output amplifier and then into the 1 -volt amplifier.
Considering there
Considering there could be three amplifiers in
cascade, all their inputs will have to be de-rated Co stop cross modulation. The easiest way to
achieve this is with a Wolsey helical constant achieve this is with a Wolsey helical constant
mpedance attenuator inserted between the first amplifier and the aerial. Mr Osborne's excellent semaphore signalling systtem can then be used to djust for optimum results. supply cable to the aerial site so we used two 12 volt car batteries which were kept charged by a 2 V yacht wind charger. quipment made by urer at very competitive prices (ean manufacthe 1 -volt launch amplifier) or my company can install any systems anywhere in the UK. The maximum usable line-of-sight range we ave obtained is $11 / 2$ miles.
M. \mathcal{F}. Rutry, G3UPV
M. . Rutty, G3UPV
Frome Relay Company
Westbury, Wilts

 . or

R都 1

VOLTAGE

CONTROLLED FILTER
The following comments on the article by A. A.
Thomas in your June issue (pp. 79-81) may be helpaus.
Filter
Filters of the form shown in Fig. 2, and their
low-pass counterparts, are known as Sallen-and-
Key fiter Iow-pass cous.
Key filters.
Whilst it
Whilst it is quite all right to use the factor
alpha $(=1 / Q)$ as in the article, it is not the alpha $(=1 / Q)$ as in the article, it is not the
damping factor as usually defined, but twic that factor. Damping factor is unity at critical damping $(Q=1 / 2)$.
The virtual repeition of a rather lengthy alge-
braic expression could have been avoided by $\begin{aligned} & \text { writing. } \\ & \text { phase shift (high-pass) }\end{aligned}=$
(Name and address supplied)
MICROCHIPS
AND MEGADEATHS
Not one of the five contratulatory letters in your
January issue (on your leader in the November January issue (on your leader in the November
1980 issue) answers the fundamental dilemma posed in my December letter. All seem to
suppose that if we (UK, ples suppose that if we (UK, plus NATO) heeded
your words the danger of world cataclysm through nuclear armaments would be reatyoclysm
or at least greatly reduced. Do they really or at least greatly reduced. Do they really
suppose that the USSR would also heed them suppose that the USSR would also heed then
and reduce or stop their enormous and in creasing pile-up of armaments of every kind
And do they suppose that And do they suppose that the resulting still
further increase in Sovier superiority would r further increase in Soviet superiority would $r e-$
duce their manifestly aggressive poolicies of duce their manifestly aggressive policic
which Afghanistan is only one example? If others would do the same, no one would be
more keen than It to turn over our entire more keen than I to turn over our entire arma-
ments industry to better things. But failing evidence to the contrary one is bound to concluse
that your supporters in the January issue that your supporters in the January issue
(though I note that none appears to go so far as to back your call to actual rebellion), by
fal favouring unilateral disarmament, are in favour,
intentionally or not, of Soviet world domin intentionally or not, of Soviet world domina-
tion. The enormous over-kill in Soviet armation. The enormous oover-kill in Soviet arma-
ments still being built up, together with the ments suil being built up, together with the
steady Soviet policy of annexation by direct or
indirect indirect invasion, leaves no alternative. So to
talk of usually voting Conservative, "the concept of free enterprise being attractive", in coniunction with being in favour of reducing
our arms, is short-sighted. There would be no our arms, is short-sighted. There
free enterprise under Soviet rule.
Iree enterprise
M. G. Scroggie
Bexhill
Bexhill
Susex.
I have followed with interest the correspondence arising out of your exxeclent ecesitorial
"Microchips and megadeaths" in the November 1980 issue. Mr Linfoot in the April issue suggests that members of my profession who are
worried about the arms race should cease work worried about the arms race should cease work
and become a burden on society to avoid (a)
risking inventing anything of a mitary nat risking inventing anything of a military nature
and (b) contributing financially to the arms and (b) contributing financially to the arms
budget.
. I trust Mr Linfoot was simply trying to high-
light the dilemma that some expenses such as
defen defence are forced upon us whether or not we want them, but just in case he was serious I
should like to offer an alternative: all cuts in spending on the health service, education, the
arts, etc. should be fully restored arts, etc. should be fully restored, and a pro-
gramme of expansion commenced. Defence gramme of expansion commenced. Defence
spending should at once be cut to the bone and all the foreign targets that litter our countryside
should be sent packing to the USA or NATO or
hoever foisted them on us. Then those who are MEDICA
can take up where thousands of ordinary folk in PTAs, friends of the arts or hospital societies
have left off. Instead of running bring-and-buy have left off. Instead of running bring-and-buy
sales and raffles to give their kids a decent education, they can run them to buy ICBMs and cruise and Trident.
I wonder how much support they would get? Niegel E. B.
Leicester.

WIEN BRIDGE

OSCILLATOR

 issue. My colleague Tom Nash and I have als used opto-isolatoror feedback to control the gain of a Wien-bridgge oscillatar 1 . In our circuit,
which admittedy had a different function that of Linsley Hood, we found that the opto isolator could readily be replaced by a field
effect transistor ${ }^{\text {a }}$. We also found that the effect transistor ${ }^{2}$. We also found that the
system functioned well with little or no smoothsystem the d.c. feedback stage. Amplitude
ing at
control was thus achieved without control was thus achieved without sacrificing speed of response.
Christopher Derrett
London E17
References
References

1. Nash T . and Derrett C. J. F. Physics E: Scientific
Instruments Instruments, 1977, Vol. 10, pp. 5999.600.
2. Nash T. Transducer Technology, March 1979, Vol. p. $28-32$

Now that the unfortunate drawing errors in the Wien-bridge oscillator article by Mr Linsle
Hood in the May issue have been clarified Hord in the May issue have been clarified (se
correction, p.78, June issue), I feel I should point out that the preferred "new configur tion" is in fact that covered in my patent appli-
cation no. $44213 / 59$ of 1959 . An oscillator using this configuration wa marketed by Solartron (Type CO1008) in agree ment wistered. The original name the desig designed at RRE (now RSRE), gave an outpu
of 1 Vr.m. of 1Vr.m..s. with a total harmonic distortion a
1000 Hz of about $0.02 \%-2$ 1000 Hz of about 0.02% - not by any means up
to the standards Mr Linsley Hood is now achieving, but the complete oscillator used only
four germanium transiter four germanium transistors type OC44! II wa
shown at the 1960 Physical Society Exhibition Shown at the 1960
Peter I. Baxandall
Great Malv
Worcs

The author replies
I have a great admiration for Mr Baxandall's
resourcefulness and ingenuity in resourcefulness and ingenuity in the field of
electronics. I am, therefore, neither surprised nor dismayed to discovere, when I set off on
some journey of adventire some journey of adventure or exploration in this
field, that I am merely walking trodden many years previously by Peter Baxandall. I am, however, surprised, in view of the very
considerable advantages inherent in the use of considerable advantages inherent in the use of a
Wien-bridge configuration, in which the CR parallel arm is taken across a simple inverting amplifier, and the CR series arm is taken from
the output of a further inverting amplifier havthe output of a further inverting amplifier hav-
ing a gain of two, that this arrangement should
have been have eeen know for as many years as Mr Bax-
adnall's letter implies and yet not be the stanadnal's's letter implies and yet not be the stan--
dard circuit in use in Wien-bridge oscillators. I can only conclude that the rest of the world is as nobservant as 1 and myself.
f. L Linsley $H o o d$
7. L. Lins
Taunton
Somerser

TECHNICIANS
TRAINING
I was surprised to read in "Medical technicians get a new deal" in your May iscue News of the
Month, that it was felt that examinations, and hence an inproved career structure, should
come from outside medical physics come from outside medical physics, for we in
the Trent Region have been in the forefront of training in this field, having run the ONC/TEC coúrse in Medical Physics and Physiological
Measurement for seven years Furter Measurement for seven years. Furthermore, we
have encouraged students to go on to HNC level courses in medical physicis, run by various colleges, or one of the specialised subjiects succh as vectronics. However, it is very difficult to proand, in addition, cheres are two types of medical.
physics technician. physics technician.
First, there is the technician who belongs to a
ecognised medical physich ecognised medical physics department,
tructured in accordance with Whitley Council definitions; and scoranco wly with Whitley Council
there is the ad-hoc echnician, working alone or in a small group, esponsible to any department wanting techni-
cal support - for any department needing echnician is - within its rightsts to employ whoeve it wishes, pay him/her on MPT scales and actu-
ally call him/her a Medical Physics Technician Not surprisingly this situation has caused certain amount of resentment among genuine physics department staffs, who have long bee campaigning for improved professiona
standing; and, while recognising the contribu stion made to the NHS by these other tectrnica
thin affs, we feel that the title "Medical Physics suitably trained persons employed in a recog nised medical physics department.
For these resons For these reasons and in the belief that the sional representation by existing organisations, we in the Trent Region have recently estab-
lished lished the Institute of Medical Physics Techni-
cians (IMPT) to represent the interests of working in recognised medical physics depart-
ments. Its aims ments. Its aims are the organisation and stan-
dardisation of training and the stablishin of dardisation of training and the establishing of
communication channels between other repre sentative bodies. The initial response would seem to indicate a significant agreement with
these aims In conclusion, if medical physics technicians are to be recognised as professional people, then
the organisation the organisation must come from within and be
seen to be professional, and I would appreciate seen to be professional, and I would appreciate
any comments or ideas from other regions. Donald F.. Turner (Chairman) other regio
Instiute of Medical Physics Technicians Inssitute of
Royal Ha
Sheffield

ACORN MONITOR BUG

Mr J. L. Gordon's program for an Acorin microcomputer (May issue) reminds me of the
existence of a murky and sometimes infinity existence of a murky and sometimes infinitely
deep pot-hole which awaits the unwary programmer. The Acorn monitor p.r....m. allocates
the same memory location (001A) as temporary the same memory location (001 A) as temporary
storage space in three of the monitor sub-rou storage space in three of the monitor sub-rou-
tines (Scan, Hex. to display and Wait). If an interrupt occurs when a main program is exe-
cuting one of these sub-routines cuting one of these sub-routines and if subse
quently the interrupt program quently the interrupt program uses any one of
these sub-routines, then datata is lost from 001 A these sub-routines, then data is lost from 001A
and the program may (and can!) crash. Disaster
can be prevented by saving and later restoting tan be prevented by saving, antl craster restoring,
the data in 001 A ; alternatively the monito
and the data in 001 A ; alternatively the monitor can
be avoided and an antiended sub-routine written

WIRELESS WORLD SEPTEMBER 1981

Microprocessors in the gas industry

Digital experiments at British Gas

Digital electronics are playing an increasingly important role
throughout industry. Here we take a look at some of the applications that are being researched by British Gas a Killingworth, near Newcastle upon, Tyne. As they are responsible for digging so many holes in the roads, it is not surprising that many of the projects will help them to locate the ost place to dig, by locating the pipes within a limited bandwidth and a novel way to measure the contents of a gasholder are two other xperiments which will lead to of the gas industry.
The pipeline system operated by British Gas would stretch around the world six imes and it is being extended or replaced the rate of 300 miles every day. In addition half a million holes were dug by £250. Not surprisingly, British Gas moved 40 million tons of earth last year. There will always be a need to dig holes in the road, to replace old pipes or repair damaged ones. But it is obvious that improved accuracy in detecting the position of a pipe would save the industry millions
of pounds a year. It would also help excavation gangs to avoid damaging pipes or cables laid by other utilities.
Commercial pipe locators exist but the perators need special training and regular used successfully in congested area such as town centres.
Ideally, each excavation gang would be provided with compact, hand-held, inexpensive equipment that would locate all resolution. While it is possible to approach this ideal in terms of the location of metallic plant, it is not possible to detect plastic or non-metallic plant with simple ently available is unsatisfactory in currently available is unsatisfactory in terms
of resolution and simplicity of operation and is incapable of detecting non-metallic plant.
Following the failure of commercial or-
anisations to respond to the gas industry's heeds, the Engineering Research Stration ERS') of British Gas started to develop two parallel and complementary types of location equipment. Although both use
electromagnetic field techniques the com-
pact equipment employs a low frequency induction or magnetic field to achieve deectin of metallic plant, whereas the more plant uses the radiated field in the lower microwave frequency region.
microwave frequency region.
ERS has developed an experimental instrument called GASCOPACT, acronym for GAS COrporation Pipe And Cable Tracer, which uses magnetic field detection. GASCOPACT is a considerable advance on currently available commercial a transmitter to induce eddy currents in the ground and a receiver to detect the induced current that will flow in buried pipes or cables. The receiver uses an array of sensors to accurately locate the position
of the pipe or cable. This array is the basis of an automated receiver which gives a digital readout of pipe or cable plan position. All the functions of sensitivity, tuning, etc, which make the operation of coneliminated by automatic control circuits. The receiver 1.c.d. display provides an ' X ' indication when the receiver is right over the pipe and an ' O ' indication when near the pipe. The receiver monitors correct operating conditions, indicating when out
of range by displaying ' L ' for low field and 'H' for high field when too close to the transmitter. If the receiver batteries are exhausted the circuitry monitors that condition and displays ' F ' for flat.
Colve very closely spaced pipes to a much higher level than conventional equipment. The instrument is now undergoing limited field trials and has been shown to possess a tracing range of about $\pm 70 \mathrm{~m}$ about the
transmitter, but under favourable conditions can be three to four times this distance. It can locate pipes and cables at depths up to 2.5 m .
Once the trials are successfully comcontract be placed for production models. Thus an effective, simple-to-use pipe and cable locator may become available to British Gas excavation gangs, easing their work and improving operation and hence one hopes - giving better service to the

Ground probing radar The first polyethylene gas main in the UK was laid in 1968 . Usage has grown to the point where 80 per cent of the $4,200 \mathrm{~km}$ of
gas mains laid each year for new supplies
or as replacements to the existing system, and 90 per cent of the 65,000 services, are in this material. However, new technology such as this requires new instruments and
one problem is the accurate location of the new pipe underground.
Conventional low frequency pipe locat ing instruments which operate by detecting instruments which operate by detect-
ing the magnetic fields associated with electric currents deliberately induced in pipes cannot sense the presence in non-
metallic objects such as plastic and earthenware pipes and ducts capable of reliably locating all types of underground services would assist in improving the efficiency of excavation activities by allowing the use of mechancial digging equipment.
Radar techniq
Radar techniques have been successfully
used in the past to detect objects or ical features under the earth's surface. Examples of this are radars used to determine the thickness of ice in polar regions; Vie detect the presence of tunnels (used in jietnam); to locate explosive mines buried thickness of coal seams in mines. These past developments have led to the marketing of several radar systems, mainly by US companies, intended for the purpose of locating buried plant and services.
However, none possesses the level of performance necessary to operate successfully in the congested streets of Britain's towns High
High frequency energy Ground probing radars are similar to confrequency electromagnetic energy are radiated from an antenna. The reflections from distant objects are then collected, usually, but not always, by the same anenna, amplified, detected and displayed
so that an operator may obtain information not available by any other means. Normally, conventional radars operate over very large ranges (usually several hundreds of kilometres) and the transmission medium (free space) does not absorb
energy. Ground probing radars on the energy. Ground probing radars on the short ranges (several tens of centimetres), and the transmission medium (the ground) is an extremely effective absorber of energy at the frequencies (approximately
1.0 GHz) which must be used to obtain adequate resolution. In addition, the antenna of a ground probing radar leaks
flected from objects and will be detected by the radar. These signals are usually much larger than those received from tar-
gets buried in the highly absorptive gets buried in the highly absorptive ground and tend to obscure them. Such
unwanted but interfering signals, of 'clutunwanted but interfering signals, of 'clut-
ter', are a very severe problem in ground probing radars.

Possible methods

Within the broad description of ground probing radars, there are several possible methods of implementing a system:-- Microwave imaging. This is a continhous wave or unmodulated radar where an mage similar to an optical image is mathe-
natically constructed for systematic measurements taken in a plane horizontal to the ground.

Passive microwave imaging. Similar to the above technique but the instrument does not transmit any energy but detects the beamwidth of the from objects within the beamwidth of the antenna. lasting 10^{-9} seconds are transmitted using special antennae. Most conventional radars use this technique but with pulses lasting ${ }^{10^{-6} \text { seconds. }}$
Frequency modulated continuous wave (f.m.c.w.) radar. Conventional radar alimeters use this technique to accurately determine altitude.
Of theşe four techniques, ERS is actively working on short pulse and f.m.c.w. techniques as being the approaches most
likely to offer solutions. Progress in the other techniques will be monitored as part of the development programme.
 British Gas has sponsored a study into f.m.c.w. radars which was carried out by don. As a result, a prototype radar system has recently undergone small scale fiel trials, the results of which have improved
our knowledge of the operational characteristics of ground probing radars. In summary, therefore, various solutions to the problem of detecting underground services using radar technique are possible. ERS is pursuing two such
approaches. The work so far has indicated that the most significant problems are the highly absorptive nature of ground and the large extraneous signals caused by unwanted targets to which, perhaps, insuffi-
cient attention has been paid in the past. A cient attention has been paid in the past. A
systematic study into the feasibility of rasystematic study into the feasibility of ra-
dar techniques is being carried out and careful microwave design and sophisticated signal processing and pattern recognition will have to be developed to

Acoustic leak location
It is important that the position of any gas leak is determined within one metre to avoid unnecessary digging. This position is
normally deduced from concentration of gas in the soil above the suspect pipe; the leaks generally lying beneath the points of highest concentration. Samples of the gas and air mixture are obtained by probing through the road surface into the soil be-
low. This technique is usually successful, but sometimes confusing results are ob-

Two methods of detecting leaks with sound waves

1. The ' X ' displayed by the Gascopact locator indicates the position of the pipe
'O' would be near the pipe, 'L'that the signal is too 'ow, ' H^{\prime} ' that the signal is too
strong strong, and ' F ' that the internal power. supply is low - flat battery. A microswitch in the handle switches the instr
automatically when it is iffted.
2. An experiment to locate pipes using microwave radar. The portable anechoic chamber surrounding the test site would
not be necessary in practice. not be necessary in practice
3. Placing geophones to pick up the sound
emanating from a gas leak, and the vanload of electronics used to locate t leak. This is at an experimental stage and it is thought that the equipment would be more compact when a practical system had evolved.
4. A service fitter returns to his van to find a print-out waiting for him with details of his next job. He can acknowledge the call or send a number.of standard messages $s y$
pushing the apororiate button pushing the appropriate button on his set.
Speech contact is also possible if needed. 5. The Gray scale reflective strips on the side of this gasholder can be used to measure, very accurately, the contents of
the holder.

WIRELESS WORLD SEPTEMBER 1981

50
tained. A method free of ambiguity and able to determine a leak position directly
from the surface will have obvious advantages.
One possible new approach is being de-
veloped at ERS. Sound waves are introveloped at ERS. Sound waves are intro
duced into the gas using a loudspeaker duced into the gas using a loudspeaker
excited by a known signal. These waves are transmitted along the pipe by the gas. At the point of escape the sound waves drive the soil into sympathetic vibration
where gas and soil meet. These vibrations where gas and soil meet. These vibrations
in the soil radiate outwards, with part arriving at the surface, where it may be deected by geophones.
A vehicle-mounted system using this
principle has been built for exprimental principle has been built for experimental use. On arrival at a reported leak site, a
line of the suspect pipe is traced, and the loudspeaker is connected to the pipe through a standpipe within 50 m of the probably leak position. The system is then activated, and the surface above the pipe
surveyed progressively using an array of 16 surveyed progressively using an array of
geophones set 300 mm apart, to detect geophones set 300 mm apart,
Signals from other sources such as buses nd cars are generally 30 to 40 dB above any leak signals, thus preventing simple
detection of leaks. Cross-correlation methods have therefore been used to reject the incoherent external signals, and receive he signals from leaks which are coherent with the loudspeaker drive. eak sites show a potential ability to locate both pipe breaks and weeping joints. Three artificial breaks were located, while at nine real sites, six leaks were located correctly, one was correctly judged to con-
tain no leak and two gave false indications. This work will continue to validate the method as a leak locating tool.
Further development of the equipment is proceeding to improve the ability to ime to locate a leak. In particular a multitime to locate a leak. In particular a multi-
channel digital correlator is being built to handle signals from many geophones simultaneously, this will have the addiional benefit of increased signal recoverng power. The ultimate objective of this
development is a practical instrument suitdevelopment is a practical instrument suit-
able for use by non-scientific staff wherever a leak from a buried pipe is suspected and conventional techniques are not fast enough to pinpoint it.

Control of gas holder stations
Low pressure gas holders still play an important role in the gas distribution network. Being very close to the customer, for gas to be smoothed to that the trunk transmission lines can be sized to meet average, rather than peak, demand.
Holders are, however, extremely costly to Holders are, however, extremely costly to demand are very difficult to find. It is therefore important to make maximum use of existing holders, and to do this an extremely reliable height measuring system is
Conven
Conventional methods of measuring

WIRELESS WORLD SEPTEMBER 1981

By taking a radar picture of the ground and
then subtracting that from the composite picture of the ground with pipes, it is
possible to leave a picture of the pipes.
holder height all involwe moving parts and
holder height all involwe moving parts and
because of this, occasionally fail Typically, a 15 per cent margin has to be allowed. This 15 per cent of wasted capacity represents substantial investment and it is clearly worth considering possible
methods for reducing it. In the ERS system, an arrangement of coded strips on the side of the holder is read either by infra-red sensors detecting the presence of reflective strips or by microwave sensors
where the code consists of small corrugated sheets and the microwaves are dispersed by the presence of a sheet. In this way the gas holder is in effect made into a linear digital transducer system. No moving parts are needed and hence the Rerent reliability of the system is high. by using a microprocessor software programme employing an error correction technique. Here the microprocessor is programmed to accept only a height reading an apparent height change greater than this, it will recognise that an error has occurred, deduce the nature of the error, correct for it and send a signal to headquarters indicating the presence of a fault. velop before repairs beciome necessary; thus maintenance can be carried out at the most convenient time.
In addition to the error correction funcion the microprocessor can also be used to determine which gas holder at a holder
station containing a number of holders is used in accordance with a programmed sequence depending on plant operating conditions. By introducing transducers to measure solar heating effects, it will also be
possible to adjust operating limits to cater for gas expansion or to control gas inputoutput conditions if the holder is full. Should the telemetering link to central
grid control fail then the microprocessor
dance with a stored will take over in accordance with a stored
programme and perform all the necessary programme and perform ant the necessary
local control functions until the link is restored. The ERS hope to develop the microprocessor unit to the point where it can be
used to control all the governors, boosters used to control all the governors, boosters
and associated equipment on a holder station site. With an integrated system like this, accurate control will mean the holder station can be run at its optimum capacity,

Digital mobile radio
communication
British Gas is an extensive user of mobile radio systems for the efficient management of field staff. The number of vehicles equipped with radio has recently been by improved customer service and ability to respond rapidly to customer requests for attendance. Currently some 15,000 vehicles are fitted with mobile radios. This increase in numbers means that more messages have to be passed over the air, which
of course uses more air time. With the present radio spectrum available to mobile radio users in the UK, an increase in the number of messages could lead to congesion and delay.
Against this background other significant developments are beginning to in the application of computers fer job scheduling and the organisation of records. If vehicle users could be given access to these systems while in the field a further
increase in operational efficiency would result.
There is clearly a need to reduce call There is clearly a need to reduce call
durations if the congestion problem is to durations if the congestion prodem in to
be relieved. By making use of data transbe relieved. By making use of data
mission techniques to reduce the time mission techniques message it would be a relatively simple step to interface the mobile radio system
with the new work scheduling computer with the new work scheduling computer arrangement and provide direct access to
them from the field vehicles.
An analysis of British Gas mobile traffic revealed that it takes more than 40 seconds to issue job details to customer service field
staff, Replacing this voice dictation by staff. Replacing this voice dictation by transmission of the text in digital form to a
printer or display in the vehicle will propriderea or dignificant reduction in transmission time. Even at modest data rates of 300bits/second a four-fold speed improvement can be expected.
This pay-off has been recognised for some time but over the past five years a
number of attempts to apply traditional data transmission techniques (as used in telephone circuits) to mobile radios have met with little success. Work done at ERS, however, has pointed to a data transmis-
sion technique which can cope with the mperfections of a mobile radio channel.
The system
Characters are transmitted using seven-bit
ASCII and to each character an eight-bit ASCII and to each character an eight-bit protection code is added to form a data
sub-block. Data messages are transmitted

Wireless world september 198
unctions blocks of 48 characters. Status short block of eight characters. Both use a of block have their bits interleaved on ransmission and de-interleaved on reception. This technique ensures that long error bursts that occur during fades will be distributed over the block lengths as smal which is within the errower per charact correcting code. The error correcting code used will correct up to two errors in any ab-block with certainty and if more tha wo errors are detected an asterisk inted in place of the character.
tion, further protection is given to numer cal characters transmitted in the long data block. When numerical characters are con ained in a message the blocks are formed as normal, but in addition the そumerica the 48 -character block. On reception the numerical characters are checked for match with the corresponding repeated ne. If they do not match the data block will be requested. This technique almost eliminates the possibility of a number being printed in error.
Both long and short data messages are to indicate that messages have data block to indicate that messages have been re-
ceived. The acknowlegement will contain information on whether the message has been received correctly or with uncorrect able errors. If no acknowledgement is received or the acknowledgement indicates that more than the predetermined number block will be re-transmitted. The presen protocol allows a message block to be re transmitted three times before it is aborted and the operator informed of the action The acknowledgement strategy is arranged
so that the mobile always makes the last reply allowing the control to know that mobiles have received data before moving on to the next message.
Each data block is preceded by a 16 -bit preamble and a 32 -bit synchronisation
word. The synchronisation word is in special code which is unlikely to be found in a data block and has a very low probabil ity of being generated by random noise. The system transmits and receives dat at 300 bits/second and the data waveform frequency shifted (f.s.s.) between 980 Hz and 1180 Hz . The 300 Hz clock information amplitude modulates the f.s.k. waveform to enable an accurat at the receiver end.
System hardware
A prototype field evaluation package has been constructed. At the mobile radio
control point, a desk-top computer is use to control the system. Data messages ar fed from the computer via an RS232 in terface to a "data preparation module" this module consists of microprocessor
controlled hardware; this adds the error correction and interleaves the data stream for the trant dit
ntains the 300 baud f.s.k. model whic connected to the radio system. The in mally made at the microphone input circuit and at the audio output circuit before he loudspeaker volume control.
At the mobile end the audio output is gain taken so it is independent of volum control settings and the data input being point. The mobile data unit which is con ected to the radio contains microproces or controlled hardware to encode and decode the error correction process as well as rive the mobile printer. Status condition

System functions
he mobile installation is able to receive both long and short messages whicn allow he functions listed below to be performed. Mobiles will receive all data messages, but allsign code. Callsigns consist of one lette and two digits.
Receive and print typical work issue essages which normally consist of two long data blocks. The system will, transmitted to build up a longer printed message.
selective call data and light the indication Allow normal speech opecoded.
press-to-talk function is inhibited while the mobile is transmitting or receivin ${ }_{-}^{\text {data. }}$ Tran
ransmit acknowledgement to all data - Transmit up to
which canit up to six status conditio The software at the control end allows the following operations to be performed via the data link.

- Selectively call any mobile.
- Display the queue of waiting mobiles. held in the store. - Send user messages entered via the key-- Highlight the emergency status on th screen when received from a mobile.

The future

A multi-base station system for operationa use is at present being studied which will be based on the principles of the simple
single base station system described above. We would like sythan We would like to thank Dr Mike Spor-
ton, the manager of the Electronics and ton, the manager of the Electronics and
Instrumentation division of the British Gas Engineering Research Station, and his colleagues for their help in compiling these notes.

IN OUR
 NEXT ISSUE

\qquad

Distinguishing 'amplifier sound'

Some audio enthusiasts claim to be able to distinguish the 'sound' of an amplifier from hat of other equipment in a reproducing chain. This article
first discusses the subjective aspects of the experience then aspects of the experience then
describes objective laboratory describes objective laboratory experiments to verify

Microprocessor interfacing

 First of a short series onmethods for connecting methods for connecting
microprocessors or microcomputers to other equipment, e.g. for measurement or control applications. Part one describes a "universal" interface board with a-d, d -a and other functions suitable for use with any of the popular
6502 -based microcomputers.

Multichannel digital recorder

 Ustte recorder and some digisette recorder and some digi-tal electronics to construct a 12 -channel instrumentation type recorder with zero wow and flutter. Number of channels can be reduced to two, improving bandwidth from 70 Hz to 420 Hz . S / n ratio of played-back analogue signal is 60dB.

On sale 16September nels can be reduced to from

WIRELESS WORLD SEPTEMBER 1981 An uncomitted logic array chip containing
2000 logic gates, in a 40 -pin ceramic 2000 logic gates, in a 40 -pin ceramic d.i.I.
tations. A further advantage of the emitterfollower buffer is that it allows smaller
logic signal swings than have been possible logic signal swings than have been possible is buffered from the loading effects of the gates it drives) and this is a factor in reducing the power dissipation. For a $V_{c c}$ of 5 V ,
a gate with a 250 mV voltage. swing is a gate with a 250 mV voltage. swing is
claimed to dissipate only a quarter of the power of its advanced c.m.o.s. counterpart.

Cells on the chip
The chip organisation of the new ' R ' series of devices, as they are called, remains the same as for the current u.l.as, that is, a
regular matrix of identical cells occupying the centre of the chip, each cell containing a number of uncommitted transistors and resistors whose main function is to satisfy
the logic hierarchy of an 1.s.i system Perithe logic hierarchy of an 1.s.i system. Peri-
pheral cells, also containing a number of pheral cells, also containing a number of
uncommitted components, around the matrix cells and these are provided to allow interfacing and linear functions. Each matrix cell uses the new buffered logic circuir ides two 2 input NOR gates.
We understand
Industry may be promoting a scheme of combine Ferranti u.l.as with ICL's Multiboard four-layer printed circuit boards (New Products July issue, p. 84) to
provide a very flexible methed structing electronic equipment.

Comparing the structure of a transistor
fabricated in the new bipolar process (right) with the structure in the c.d.i.
process.

and 150 years earlier

The firm of Ferranti, which makes the above dioneering work of its founder, Sebastian d pioneering work of its founder, Sebastian de
Ferranti, in building alternators for the public electricity supply. So, like many others, it
would not have come into being but for would not have come isconery of electromagne induction by Mischael Faraday earlier in that century. August 29th this year is the sesquicentennial of Faraday's famous experiment with the iron ring and
its copper coils - the first transformer - at the its copper coils - the first transformer - at the
Royal Institution, London, in 1831. Within a matter of days he made the related discovery that an electric current could be generated in a
conductor by moving it near the poles of a magconductor by moving it near the poles of a mag-
net. Sir Ambrose Fleming wrote (in his book "Fifty years of electricity"): "In ten days of experimental work in the autumn of 1831 Fara-
day explored so thoroughly, in the laboratories day explored so thoroughly, in the laboratories
of the Royal Institution of Great Britain, the new phenomena he thus brought to light, that no one has since been able to add anything to his
work in the discovery of the fundamental facts." Bork in coincisconcere, 1831 was also the year in
Bhe which James Clerk Maxwell was born (see the appreciation in our March and May issues). The
names of these two great scientists are of course names on these two great scientists ale of course
forever linked in the history of electromagnetism. It was Faraday's concept of "lines of
force" which stimulated Maxwell (he read a
paper on it at the age of olly weny-dree) and magnetic fields and their interchangeability. Between them the two men produced a profound shift in the prevailing view of physical reality.
Under the influence of Newtonian mechanics, force had been seen as something belonging to a material body. Now it was replaced by a subtler concept, namely a field of force; something that
was a reality in itself and could be considered in isolation from material bodies. But although it was left to Maxwell to predict formally that electromagnetic fields are propagated through
space as waves, and that light is electromag netic, some historians of science point out that Faraday might well have had an inkling of these concepts as early as the 1830 s. Here is part of a
sealed note, signed by Faraday on 12th March 1832, which had been deposited in a strong box at the Royal Society, London, and was not
opened until 1938 (photographs of the note opened until 1938 (photographs of the note,
appear in "Magnetism and electricity in 1832 "
by appear in "Magnetism and electricity in 1832 "
by G. R. M. Garratt, Wireless World, 5 May,
1938): 1938):
"Certain of the results of the investigations which are embodied in the two papers entitle
Experimental Researches in Electricity, lately rea Experimenalal Researches in Electricity, lately read
to the Royal Society, and the views arising
therefrom in connexion therefrom, in connexion with other views anc
experiments, lead me to believe that magnetic
action is progressive, and requires time; i.e. that when a magnet acts upon a distant magnet o
piece of iron, the influencing cause, (which piece of fire , the influencing cause, (which
may for the moment call magnetism), proceed gradually from the magnetic bodies, and re-
quires time for its transmision which will prob quires time for its transmission
ably be found to be very sensible. "I think also, that I see reason for supposing
that electric induction (of tension) is also per that electric induction (of tension) is also per
formed in a similar progressive way formed in a similar progressive way.
"I am inclined to compare the diffusion of magnetic forces from a magnetic pole, to the vibrations upon the surface of disturbed water
or of those of air in the phenomena of sound or of those of air in the phenomena of sound
i.e., I am inclined to think the vibratory theory will apply to these phenomena, as it does to
sound and most probably to light, sound and most probably to light.
"By analogy I think it may possibly apply to
the phenomena of induction of electricity of the phenomen
In the above-mentioned Wireless World article
the author makes this final comment: "To Farathe author makes this final comment: "To Fara day . .. must belong the honour of having put
forward the first suggestion that time is required for the transmission of electro-magnetic forces."
That he should have simultaneously suggested that their propagation is comparable with
waves on the surface of disturbed water such a short time after his 1831 experiments is
further proof of his genius.

Variable expansion unit
Wideband expansion can successfully be achieved using current biased diodes as voltage controlled resistors. This design produces less than 0.5% t.h.d., below lmV 1.f. modulation, and d.c. surging be TO.SmV
fo two voltage regulators back-to-back which provide smooth and noiseless control of expansion. One control section
can drive up to 12 expanders over a $14 d B$ can drive up to 12 expanders over a 14 dB
range. If a greater range is required, the $10 \mathrm{k} \Omega$ resistor can be reduced. IC_{3} is provided to restore the original volume level and can be omitted. The $22 \mu \mathrm{~F}$ tantalum
capacitors should be matched as closely as capacitors should be matched as closely as
possible. Because silicon diodes require possible. Because silicon diodes require
0.4 V to conduct, the resistor network around D_{1} and D_{2} provides a bias voltage so that active rectifiers are not required at low levels. If a higher supply voltage is used, the resistors should be adjusted to
provide 0.8 V across points X and Y To provide 0.8 across points X and Y . To
keep distortion below 1%, the voltage applied to v.c.r. diodes D_{3} and D_{4} does not exceed 7 mV . Also, the $10 \mathrm{k} \Omega$ resistors in series further reduces distortion. It is not advisable to use a supply voltage below 9 V because the 741 s do not operate s. G. Young

Newhaven
Sussex

600 ohm floating source
Fig. 1 shows a unity-gain 300 ohm driver which uses voltage and current feedback to provide a high maximum output level from low supply rails. Driving two of these cir-
cuits in antiphase produces a 600 ohm balanced-line output as shown in Fig. 2. However, connecting an unbalanced load to this circuit causes a level drop of 3.5 dB because one amplifier drives into 600 ohms
and the other is shorted. Fig. 3 shows a and the other is shorted. Fig. 3 shows a feedback resistor of A_{1}. This provides an infinite common-mode output impedance, i.e. a floating load. By splitting the feedback to A_{1} equally between the two output
terminals as shown in Fig. 4, the output amplitude remains constant irrespective of whether the centre or either end of the load is connected to ground.
D. Austin
Birmingham

Birmingham

Generating

square-waves with phase-jumps
The transient response of a p.1.1. can be tested by dernately advancing and retard-
ing by 180° the phase of a square-wave ing betor. With the values shown, output
generato generator. . is bhe values shown, output
frequency is about 2 kHz and the phasejumps occur at intervals of about 2 s , but these figures can easily be altered to suit other applications. The output frequency
is limited to below 1 MHz by the ripplecarry propagation delay of the divider chain. Howeever, if a synchronous divider is used, the frequency range can be signifi-
cantly increased If he ouput is applied to cantly increased. If the output is applied to an auxiliary divider, the magnitude of the
phase-iumps will be reduced in the same ratio as the frequency.
Three exclusive-OR gates form a conventional oscillator which drives the divider chain at about 4kHz. The fourth gate
produces a 2 kHz square-wave which is produces a 2 kHz square-wave which is
reversed every 4096 cycles. A spike produced at each reversal is eliminated by the output 4013 which triggers on opposite oscillator transitions to the divider. At alternate reversals, a second 4013 is trig-
gered which resests the first, so the output, gered which resets the first, so the output

4013 completes one cycle during one oscillator cycle, which represents a phase-adsecond 4013 is not triggered and the output 4013 remains in the reset state for two consecutive oscillator cycles. Therefore, three oscillator cycles are required to complete the sequence and this represents a
retardation of 180°. The output waveform contains the same number of transitions a and the positive-going transitions are directly timed by the oscillator.

E. L. Jone

Shropshire

Random-number
generator
A simple random-number generator, such
as the electronic die circuit as the electronic die circuit shown, can be
constructed by using switch bounce to produce clock pulses. If the switch is biased l.e.d. E is normally on, so pressing the switch turns E off and enables the display. Each depression and release of the pulses. produces a random number of J. Cameron Bradford

The EP4000 is not just an EPROM Programmer . . .
 Not only does the

EP4000 copy, store, program and duplicate the $2704 / 2708 / 2716$ (3) 16/2532 nd 2732 EPROM without personality ards or modules, bu output for memory map output for memory
display to make the display to make th facilities really useful and this is in addition to the in-built LED display for stand-alone use), but for stand-alone use), but with comprehensive
 parallel handshake, cassette, printer and direct memory acc an be expanded with our accessories listed below.

. . . but also a Real Time EPROM Emulator

Real time EPROM Emulation is the second major function of the EP4000. This facility allows the machine to directly replace your incircuit EPROMs during the process of program development - the EP4000 can be configured development - the EP 400 can be co to look like any EPROM it is capable of
programming. The press of a button isolates

. . . with real technical back-up and service.

The EP4000 comes with a technical manual describing every aspect of the machine - its purpose, its use, and how to use it. It also has a ection describing the whole process of program development.
And if you ever need technical help or advice, you can now dial direct to our technical department for instant attention - Tel. (0803) 863380 .
Finally, a full range of accessories in now available - these include Bipolar programming
the external system so that data changes entries, editing and downloading can be implemented. When the program is complete and working, the simulator cable can be replaced by an EPROM programmed by the EP4000.

G.P. Industrial Electronics Ltd.

Unit 6, Totnes Industrial Estate Totnes, Devon TQ9 5XL
Tel. Sales (0803) 863360. Technical (0803) 863380
Telex: 42596 GPELEC

TILT

Tilt.

Nothing to do with pinball wizardry has a great deal to do with programme alance
The recording or broadcast engineer attempts to capture the ambience of listener perceives is the aggregate of his and the reverberation
aracteristics of his listening room.
If all listening rooms were equal the but since some listening rooms are more equal than others, the engineer has to assume some arbitrary norm, and he chances are that further correction and compensation will give improved eproduced in a 'live' listening room will sound overbright and a dry
 verdamped or 'dead' room will.sound The tilt
The tilt control on the Quad 4 characteristics of your room but by gently sloping the frequency response of your system about a centre point, chosen to maintain a constant overall
subjective level, it can produce a more natural programme balance, without introducing unwanted colouration.

If you are in any doubt that the stening room characteristics have a undamental effect upon the final esults try listening to the same record played on the sam

To learn all about the Quad 44 write or telephone for a leaflet. The Acoustical Manufacturing
Co. Ltd., Huntingdon PE18 7DB Co. Ltd., Huntingdon PE18
Telephone: (0480) 52561.

So called 'single-chip'synthesizers ow in existence require a
considerable number of extra circuits as they are designed for use in mixer ype synthesizer applications. This article outlines a simple single-loop ype synthesizer designed with the Home Office's proposed regulations
for UK citizens' bands in mind (as far as transceiver specifications and requency allocations are concerned). At the hub of the design are two i.cs om Plessey; the SP8793, 40/41 dual modulus divider and the NJ 881

The proposed frequency allocation for cit 27.60125 to (c.b.) radio in the UK is divided into 10 kHz channels numbered rom 1 to 40 . A simple low-cost frequenc ynthesizer capable of meeting the pro posed UK c.b. specifications in terms of djacent channel noise, spurious sidebands, etc. can be made using the NJ881
and SP8793 i.cs from Plessey. Frequenc modulation of the synthesizer is simple bu the audio response is shaped to limit adja cent channel power
A channel power. J8812, controls the divider. This devie comprises two programmable dividers one in the signal path and one for the eference-frequency input to the phase de tector. These dividers feed a digital phas dector, the oupdes of the vich are used lower as required.
An address consisting of $31 / 2$ words, each 4-bits long, is used to program the ontroller. These words are multiplexed into the device under control of an interna called DS1 and DS2 which form part of the program for a r.o.m. or p.r.o.m.
The controller address may be provided in a number of ways from a simple circuit with two 74153 multiplexers to a
microprocessor system. A 2716 p.r.o.m. is used here. The reference divider in the controller can be set to one of sixteen division ratios using pins 8 and 9 (FA and FB) B. are wired to 5 V and ground respectively.

Circuit description
The circuit, Fig. 1, is a simple single-loop synthesizer with two-modulus prescaling modulus divider, the SP8793, does the
prescaling. This high-sensitivity i.c. has utput, and an internal voltage regulato so that it can be used with a wide range of upply voltages
One gate of a CD4011, biased to operate in its linear region, is used for the 4.8 MHz me i.c. buffers the oscillator signal. The Φ / U (up) and Φ / D (down) outputs of the NJ8812 are combined in a charge pump circuit. The \varnothing / U output is inverted by a c.m.o.s. gate and fed through a diode into the loop filter so that when the ©/U outpu creases. At the same time the $\emptyset \mathrm{D}$ output pulls the control voltage lower.
The loop filter, consisting of $\mathrm{C}_{1}, \mathrm{C}_{2}$ and R_{2}, integrates the pulses from the phas detector. Further filtering is provided by a $450 \mathrm{~Hz}, \mathrm{C}_{3}$ and C_{4}. The reference fre quency fed into the phase detector is .000444 kHz . Because the loop locks hat the output frequency of the synthe ence frequency, exact 10 kHz steps can only be produced on channels that are an exact multiple of 10 kHz . For example ith a reference frequency of 10 kHz and vider ratio of 2780 , the output frequenc 27801.25 kHz . Thus, channel 1 will be times the reference frequency and hannel 40,2799 times. This results mall errors of +8.54 8.99 Hz at channel 1 .

J 8812 is set by means of a crystal ad usted to 4800.215 kHz . The specificatio requires that the transmitter frequency be ontrolled to within $\pm 1.5 \mathrm{kHz}$ at all times p.p.m. is needed. Through not using exactly 10 kHz as the reference frequency, an error of 0.33 p.p.m. is introduced. This error can thus be ignored. Because the required temperature is $50^{\circ} \mathrm{C}$ the temperacystal should not exceed 0.75 p.p.m. $/{ }^{\circ} \mathrm{C}$ his stability allows for some degradatio the other oscillator components.

Voltage controlled oscillator The v.c.o. is the heart of any frequency ensure that has to be carefully designed the frat phase noise is minimized monotonic and that the fre quency range is no more than that required

Spectral purity of the synthesizer from a spectrum analyzer. (a) Shows response econd sweep. The centre frequency is $27,00125 \mathrm{MHz}$ and each horizontal division is 5 kHz z. (b) Is a 20 ms sweep without
modulation starting at the left from a modulation starting at the left from a
frequency of 20MHz. Each horizontal division represents 2MHz. (c) is a onesecond sweep, also unmodulated, with a
centre frequency of 27.00125 MHz and 5 kHz /div. horizontally. In all three cases the vertical scale is 10dB/div.

or the cover

In this synthesizer the v.c.o. uses a junc on used. because it does not produce noise and thus minimizes noise modulatio

WIRELESS WORLD SEPTEMBER 1981
of the signal. Tuning is done by a variablecapacitance diode and modulation is ap-
plied to the control line on transmit. For receiving, a second variable-capacitance diode is switched in parallel with the inductor. A parallel trimming capacitor adjusted. adjusted.
sary isolation betower provides the necesexternal circuitry. In the prototype a ${ }^{2}$ N5770 was used for the follower but many other similar divices may be used.
The output from this stage is at a low level and amplification is required in transmit mode. In the receive mode the output is adequate for most receiver mixers. The v.c.o. is buffered to minimize the chance of spurious modulation caused by the divider

Programming

A $31 / 2$ word $\times 4$-bit address programs the divisor in the NJ8812 and hence determines the output frequency from the ontroller/divider phase-locked loop connation used here is capable of dividing byinteger values between 1600 and 11839. When the range input (pin 1) of the controller is at logic 0 the divisor range is from 6720 to 16959 . Divisors between input is at logic 1 .
The 14 bits that make up the address can be found using a calculator as follows. irst find the program number N using the formula,

$$
N=\frac{(1000 \times f)}{C}-R
$$

where f is the v.c.o.frequency in MHz, C is he channel spacing in kHz and R is the devisor range number. When the controller range input is at logic $1, R=1600$ and hen at logic $0, R=6720$
The program number N may be calculator using the following procedure:

- enter the number N
- divide by 640
write down the number before the decimal point
subtract the number before the decimal
- multiply by 16
- write down the number before the decimal point
subtract the number before the decimal point

- multiply by 40
the nearest whole numbe the one displayed.
example, you will have an answer in the form $8,11,30$. This result can now be converted to binary noting that the thir decimal number gives the last six bits of binary as follows - 1

1110.

The least significant word is first en tered during the data read 1 time slot via the inputs $\mathrm{D}_{3}, \mathrm{D}_{2}, \mathrm{D}_{1}$ and D_{0} and the most
significant last (data read 4 time slot). The significant last (data read 4 time slot). The
second least significant word contains only two bits entered via the inputs D_{1} and D_{0} Data presented to the inputs D_{2} and D_{3} during the second time slot is ignored by the controller.
For example, with a v.c.o. frequency of $f=121.2, C=25, R=1600$ and $N=3248$. Conversion to a 14 -bit binary number is performed as follows:

- Divide N by 640
- Write down number before
decimal place (word ' D ')
- Multiply by 16
- Write down number before decimal place (word 'C')
- Subtract this number
- Multiply by 40
rite down nearest whole
number (word 'A
The decimal numbers obtained for words 'C' and 'D' may be directly
converted to 4 -bit binary words, while the decimal number for words ' A ' and ' B ' will convert to a 6 -bit binary word. The least significant four bits of this word give word A' while the two most significant bits give the least significant bits of word ' B ' (the
two most significant bits of word ' B ' having 'don't care' states). These are presented to the data inputs as follows.

| DS1 DS2 | D_{3} | D_{2} | D_{1} | D |
| :--- | :--- | :--- | :--- | :--- | :--- |

1 word
As mentioned above the NJ 8812 is proof 4 bits each. As a result 1120 bits are equired to program a 40 -channel synthe izer (i.e. 40 transmit and 40 receive). Be-
cause of the architecture of r.o.m.s p.r.o.ms these channels can only be
satisfactorily accommodated by a 512×4 bit memory. Such memories are available but they are expensive. This circuit use the common 2716 p.r.o.m., which may be replaced by a 2316 r.o.m. if required. Manufacturers of equipment covering
European channels conforming to the FCC European channels conforming to the FCC
specification and/or the 934 MHz UK allocation can use the spare capacity of the p.r.o.m. or r.o.m. to include the extra programming information. Selection of made by providing a link on can then be the A10 input. For 934 MHz , A10 is eithe grounded or tied to +5 V depending on the system (as will be described later) and All is tied to +5 V
Where a 455 kHz second i.f. is used in the receiver, a separate crystal is require
to convert the nominal 107 MHz first to 455 kHz . This crystal varies between ${ }_{10245.48 \mathrm{lkHz}}$ for UK channels and 10246.968 kHz for FCC channels, and is best realised using a 10246.25 kHz crystal
in a circuit which allows adjustment to .either frequency.
The r.o.m./p.r.o.m. used to program the NJ8812 is addressed from the channel selection mechanism of the equipment.
Because the channels are numbered 1 to 40 Because the channels are numbered 1 to 40
rather than 0 to 39 , additional circuitry is required to modify the display using, say, an 8 -input NOR gate. The b.c.d. program input to the r.o.m./p.r.ro.m. is arranged so that addresses 1 to 39 program channels .
to 39 , and address 0 programs and displas. to 39 , and add
channel 40 . The NJ 8812 has a "lock-detect" output which, when integrated in an RC network, provides a logic level 0 which can be used
for inhibition. This flag can also be used to for inhibition. This flag can also be used to
blank the le. display.

Setting up
Referring to the circuit diagram of Fig. 1, start by selecting channel 20 and connect point p.t.t., i.e. the point at the bottom
right of Fig. 1 , to 0 V . Adjust the core of L_{1} ${ }_{\text {ro }}$ that the voltage at tp ${ }_{1}$ is 4 V . Next, so that the voltage at tp p_{1} is 4 V . Next,
connect p.t.t. to +12 V , i.e. in receive mode, and adjust C_{1} until $\mathrm{t} \mathrm{p}_{1}$ is at 4 V . The specification requires that when the transmitter is modulated at 1250 Hz with modulation level 20 dB greater than tha required to produce 1500 Hz deviation, the 10 kHz away from the carrier frequency should be less than $10 \mu \mathrm{~W}$. This corresponds to a power of -95 dBc in a 1 Hz bandwidth for carrier separations of 5.25 kHz or greater.

The Home Office's publications describing performance speceifications for c.b. radio equipment are MPT1320 for 27 MHz and
MPT1321 for $934 M H z$. They are available from Her Majesty's Stationery Office. Plessey Semiconductors Ltd's address is
Kembrey Park, Swindon Wilts SN2

Double-sided glass fibre p.c.bs will be vailable for $f 6$ inclusive v.a.t. and UK postage from M.
London NW2.

Electronics on the road - 2
Automatic control, instruments and display
by J. R. Watkinson, B.Sc., M.Sc.

The first part of this article, in the August issue, was concerned with
ignition electronics and automatic gearboxes. Part 2 is on the use of electronics in controls for braking, suspension and throttle operation.
Electric drive for vehicles is described and there is mention of recent work on instruments and computers.
One of the more important uses of electronics is in braking, particularly in tions, where jack-knifing can happen.
Antilock braking. Under heavy braking (Fig. 8), weight transfer unloads the reat (Fig. '8), weight transfer unloads the rear
wheels of a vehicle to such an extent that the reaction from the road may not be enough to turn them against the resistance
of the brakes. This results in a rear-wheel of the brakes. This results in a rear-whee slide, which means that braking efficiency
will be lost. More serious, however is the fact that a vehicle with locked rear wheel is directionally unstable, and will spin unless it is travelling dead straight.
An electronic antilock system, as shown in Fig. 9, monitors the tangential velocity into the hubs, or in some cases the speed of the propellor shaft. If the velocity change at a rate much more than \lg then the whee is sliding. The decision can be made by differentiating the velocity signal and compredicted imminent lockup, the system reduces pressure to the affected wheel(s) with the vacuum operated de-boost unit shown in Fig. 10. This device works by
first isolating the brake line to the affected wheel with a ball valve, and then by in.creasing the volume of the fluid reservoir, until the wheel is observed to be turning again, when the de-boost unit re-applies line pressu
Modern tyres are made from hysteresis rubber which dissipates elastic energy a heat. When such a tyre slips in a controlled fashion over road irregularities work is done on the rubber, which implies that a simple friction. By setting up the antilock system to slip the tyres in this way, decelerations of considerably more than lg are possible.
Antilock brakes have been particularly successful in preventing jack-knifing in
articulated vehicles. For diesel vehicles the de-boost unit is designed to run from
the air brake system, as diesels have no inlet vacuum. Current systems cannot prevent power jack-knifing, where engine effort exceeds the available adhes

Active suspension. When a vehicle corners, the force accelerating it toward the centre of the turn acts at ground level, but the centre of mass of a practical vehicle is some distance above. Weight transfer springs, which usually results in an inter-
action with the steering and changes in the camber angles of the tyres. Energy is tored in the springs, which must be dissithe corner. The moment of inertia of the vehicle about the roll axis and the roll tiffness govern the resonant frequency of the system. If the dampers are ineffective, resonance can turn it over. This is why goods vehicles are sometimes to be seen on heir sides at the exit from a roundabout.

Fig. 8. At constant speed, weight is distributed evenly, while during braking, weight is
transferred to front wheels. Reduction of weight at rear axle could cause rear wheels to trans
lock

Fig. 9. If rate of change of wheel speed, v, exceeds reference, wheel is sliding and brake is
released.

Fig. 10. Vacuum-operated deboost unit isolates wheel from brake line and reduces
hyoraulic pressure. Solenoid valve controls vacuum to diaphragm, which closes ball valve and retracts piston, reducing pressure in brake line. Otherwheels are not
affected.

IRELeSS WORLD SEPTEMBER 1981 eliminate the slow-roll-over phenomenon. As shown in Fig. 11, the suspension spring wheel position is monitored with a transducer. If the wheel moves toward the velicle, the movement is sensed by the
transducer, causing the ram to extend until the wheel is back where it was, which compresses the spring. In the case of a vehicle cornering, as in Fig. 12, one spring.
will become compressed, and the other will become compressed, and the other
will extend, but the vehicle will not roil: by incorporating an accelerometer into the system, the vehicle can actually be made to lean into a corner. The bandwidth of the system has to be carefully restricted, since otherwise the suspension would appear in-
finitely stiff to road bumps. It will be evident that if a heavy load is placed in a vehicle having such a system, it will remain parallel to the ground however badly distributed that load may be. In addition, ional to the reaction at the wheel, and could be used to accurately apportion braking effort between the wheels.
With the suspension under complete control, it is possible to insert an offset into roadspeed, such that at low speeds the ground clearance is high for traversing rough ground, and as the speed rises the ground clearance falls to reduce drag and improve stability. Active suspension systems can be implemented in a purely
mechanical fashion ${ }^{0}$, but as the complexity rises, electronic control has to be considered. A subset of active suspension is self-levelling suspension, which is designed to compensate only for load varia-
tion. In these systems end of the axle are plumbed in parallel and the bandwidth of the system is very small. Citroen have offered cars with full self levelling and load-sensitive brake proportioning for many years, although no was launched in the 1950s.

Cruise control. This application takes the form of a feedback loop which compare actual roadspeed with a preset reference, and operates the throttle to maintain con-
stant speed. As shown in Fig. 13, roadspeed can be monitored by a pulse generator on the propellor shaft, as in the antilock brake system. The servo error drives an actuator on the throtte spindle, operated. For safety reasons the system disengages if the brake pedal is pressed and a switch is fitted to the clutch pedal to prevent the system blowing up the engin if the clutch is depressed. On most system the driver can on faster just by pressing the throttle, the preset speed being resumed when the throttle is released. The desired speed is latched from the roadspeed at the moment that the system is engaged
a simple matter to drive a moving-coil speedometer dial, eliminating the usual drive cable. The odometer then counts pulses from the transducer. Fig. 14

Fig. 11. Active suspension interposes rams
between springs and body

Fig. 12. When vehicle corners, rams
counteract weight transfer
more linear than the usual eddy current type mechanical speedometer

Electric motor control. The technology of electric vehicles is well developed, mainly in the fields of rail traction, fork trucks electric power to road vehicles awaits of development of lightweight batteries or fuel cells since, with current designs, range is very limited. The main attributes of electric power are that there is very little
noise, the transmission is very simple ${ }^{63}$ noise, the transmission is very simple, and
dynamic braking can be used, which dynamic braking can be used, which
conserves energy. The oft-quoted virtue of reduced pollution is a pure fallacy, as the source of the pollution is simply shifted to the power station. A simple speed control and braking circuit is shown in Fig. $15(\mathrm{a})$. machine is a motor or a generator is made by comparing the supply voltage with the e.m.f. due to rotation. If the e.m.f. exceeds the applied voltage, the machine is a generator, and current will flow against the is being converted to electrical energy. Conversely, if the applied voltage exceeds he e.m.f. current will flow in to the machine, and it becomes a motor, convertThe current in or out of a machine can be predicted by Ohm's Law, stated as the difference between the applied voltage and the e.m.f. divided by the total circuit resistance. For a constant supply voltage, the very nearly equal e.m.f. The e.m.f. of a conventional d.c. motor is proportional to the field current multiplied by the r.p.m. It follows that to increase the r.p.m., the field current has to be reduced, and to educe the r.p.m. In Fig. 15(b), the motor is driving the vehicle. The field current is moderate, and he e.m.f. is just less than the applied volage, causing current to flow into the perated the brake pedal, and instead of dissipating the kinetic energy of the vehicle as heat, the field current is in-

creased, such that the e.m.f. now exceeds the applied voltage, and the motor acts as a generator, taking energy from the vehicle's
movement and putting it back into the supply. In the interests of efficiency the field current is controlled by a switching regulator.
Dynamic braking is already in use in
trams and railway trains, where true regenrams and railway trains, where true regen
cration takes place. It also finds application in very heavy vehicles, such as those used in open-cast mining and civil engineering. Because of the enormous power of
such vehicles, conventional clutches and uch vehicles, conventional clutches and brakes would burn up. To overcome this
problem, the transmission from the diesel or gas turbine is by way of a generator driving electric motors. Control is then by field current as previously described. As it is not possible to regenerate with the main engine, the electrical energy developed
during braking is dumped into huge resistor banks. With all dynamic braking systems it is not possible to brake to a complete halt, and therefore conventional brakes must be provided to finally stop, ingle motor, these brakes would also be necessary in the case of a motor failure, but heavy vehicles use multiple motors with duplicated systems so that a motor failure would not interfere with safety require ments.

Monitoring and display Instruments. A replacement for the cabledriven speedometer has already been des-
ribed, and the application of electronics to other instruments could further reduce the clutter behind the dashboard. Much of he potential lies in the area of displays, still problems to be overcome; however, as sill problems to be overcome; however, as
.e.d.-type displays cannot be read in e.d.-type displays cannot be read in
bright sunlight, without elaborate arrangements to enhance contrast, and currently iquid-crystal displays do not appreciate emperature extremes. The widespread
doption of digital readout is to be discouraged, as psychophysical research has shown that it is quicker in all cases to read an analogue display than a digit, and therefore safer. The current mania to fit seven-segment indicators to everything
from f.m. tuners to ballpoint pens will perhaps have given way to more ergonomically reasonable displays by the time that electronic displays are available in motor vehicles. Certainly the swing back to analthat people appreciate an ergonomic interface to electronic equipment. C.r.t. displays have been proposed for road vehicles, but this type of display would appear to have little advantage, since space behind the dashboard is at a premium, and able depth. Power requirements, warm-u time, contrast and safety are issues which must be considered, to say nothing of the generate an ergonomic and pleasing display. Less attractive features of this kind of display have been anticipated ${ }^{11}$.

WIRELESS WORLD SEPTEMBER 1981 computer. Constants such as tank capacity
and calibration factors are entered with a keypad, as is the quantity of any fuel taken on. Commercial units have been available
for about two years which microprocessors to perform certain useful and certain less useful calculations on the input data. One unit ${ }^{12}$ offers the following outputs

- instantaneous m.p.g
- average m.p.g.
- average speed
- time to destination at current speed
- distance before fuel runs out

Fig. 15. Electric motor control Armature Fig. 15. Electric motor control. Armature
e.m.f. in (a) is proportional to speed multiplied by field current. With moderate field current, as in (b), motor draws current
and propels vehicle. Heavy field current in (c) causes armature e.m.f. to exceed battery voltage. Motor therefore acts as

Trip computers. This is a relatively recen instrument as far as motor vehicles are concerned, although it is nothing new in aviation. Referring to Fig. 16, a pulse train
representing roadspeed (pulse rate) and distance travelled (pulse count) from the asual sources, and a pulse train from a flowmeter in the fuel line feed the fuel

[^1]Collision avoidance. Many problems besystems for road vehicles. Possibly the most likely system yet has been researched in the U.S.A. The most common collision in conditions of poor visibility is that of running into the preceding vehicle, and a relp prevent this. The main problem with on-vehicle radar is discrimination between the preceding vehicle and those going the other way, not to mention roadside objects. One solution is that the rear licence
plate of all vehicles should incorporate a passive frequency doubler network, so that the radar of a following vehicle would only respond to echoes of twice the transmitted frequency ${ }^{13}$. In the U.S.A. one buys icence plates annually instead of tax discs, equip every vehicle with a transponder in equip every vehicle with a transponder in could then compute distance and closing speed, and actuate warning signals gnd
ultimately the brakes if a transponder was ultimately the brakes if a transponder was being approached in the path of the
vehicle. Input from the steering would vehicle. Input from the steering would
probably be necessary in order to prevent false alarms from parked vehicles at the
side of the road, particularly on bends. side of the road, particularly on bends.
Influences on automotive electronics
Engineering efficiency is only one of the constraints in the design and selection of Social forces. At the moment, most cars are sold to fleet owners who will keep them for two years before discarding them.
There is thus little incentive to make cars There is thus little incentive to make cars
which last much longer without requiring which last much longer without requiring
major replacements. To take just one example, the cost, countrywide, of replacing corroded exhausts can only be des-

WIRELESS WORLD SEPTEMBER 1981

TC-15 car computer by'Smith's Industries,
which the makers claim could save up to $.20 \%$ of fuel.
cause it is socially acceptable, the nation continues to drive cars with mild steel exhausts which drop off every two years. One of the major features of electronic devices is that moving parts are largely eliminated and that long-term performance is therefore good. In the pecaliar logic virtue, and as a result no electronic device will be selected on this ground alone except by quality makers. The electronic device must actually be cheaper than the mechanism it replaces before the economists who really design mass-produced
vehicles will consider it. The exception to this is if the device can be latched upon by the image makers of the advertising department. An example which happily fitted both categories was the alternator, which was actually cheaper to make than be explained in nursery language by the Admen. The unfortunate regulator could not be expected to capture anyone's imagination, so for a long ume mechanical reguics became cheaper.

Environment. The underbonnet area of a motor car is pretty hostile to electronic equipment, so good design and engithat the device survives. If, however, the device does survive, it should do so for a ong time.
One problem is the temperature range encountered. Vehicles are frequently starting the engine, parts of the engine compartment can go up to boiling point in a short time. An electronic device has to be carefully positioned to avoid temperature arte mutually exclusive, positioning also has to reflect this. In the past, manufacturers have been peculiarly adept at positioning the electrics where most water will be sprayed. One famous small vehicle the distributor was mounted directly behind the grille!
The power supply in a motor vehicle leaves a lot to be desired from an electronic engineer's point of view. When cranking a
freezing engine, the voltage can drop to as little as 6 volts, but with the engine run ning it can go up to about $141 / 2$ volts
Superimposed upon this are interference spikes from the ignition and from various electric motors and switching regulators. Filtering, decoupling and screening can all lem and careful circuit design has to be used to ensure operation at extremes of supply voltage.
Legislation. The form of modern vehicles is heavily controlled by legislation which, in turn, is usually only dictated by safety the motor industry will probably be forced to employ more electronic devices to meet higher standards demanded by law. Cer tainly had it not been for emission and fuel economy legislation in the U.S.A.
electronic ignition would not have become so widely used
Maintenance. Before designing any device, the responsible designer must first establish the level of competence of those who are expected to maintain it. There is little point in designing a complex device for production if it is too difficult to repair. The motor trade already works extensively whereby a unit is replaced whole rather than any attempt being made to repair it a component. level. The exchanged assemblies are then either repaired by specialis

Smith's TC-10 trip computer, designed for the Metro. Calculates distance to go and
cerned.

With mechanical parts, the fault usually pretty easy to locate to an assem bly, but this is not necessarily the case with electronic systems. Before designing complex electronic system for a vehicle, it
will have to be assumed that the system will incorporate sufficient diagnostic ability to call out its own faulty parts. The latest generation of computers incorporate such features, so that the majoirity of fault
can be fixed by relatively unskilled techi can be fixed by relatively unskilled techni-
cians, and it is expected that this tech cians, and it is expected that this tech-
nology will filter down to consumner equip ment. Ultimately, of course, someone has to know how these devices actually work, in order to repair the small percentage o
faults which the internal diagnostics fail to faults which the internal diagnostics fail to
locate. Judging by stories of customer dis locate. Judging by stories of customer dis-
satisfaction with the motor trade, it would appear that it is in this support area that there is a need for a more effectiv structure.

The amateur. The home constructior has great advantage over the mass producer in that he is not obliged to make a profit Looked at in a cold light, no homie-made electronic equipment results in a financia
saving, but the potential for learning and saving, but the potential for learning and
self expression far exceeds that of purchas ing ready-made goods. In the sphere of automotive electronics, there are certain constraints which are not normally applicable to the home constructor. If a homegoing to be too upset, but if, for the sake of argument, your home-made fuel-injection system passes away in the middle of Dart moor you can look fairly silly. It cannot be emphasized enough that in automotive ap well as designed, and some kind of soak testing has to be carried out before venturing far away. The effects of a failure should be predicted rather than discovered, and steps taken to ensure that it is still possible ful degradation and redundancy should be designed in wherever possible. It has been observed that for putting one's money where one's mouth is, automotive electronics is at about the same point on
the scale as radio-controlled model planes. Finally, the safety aspect has to be mentioned. As with any application of electronics, some technical knowledge of the field of that application is needed in addition to electronic knowledge. Motor
vehicles have no shortage of parts which can maim, burn and poison if handled unwisely, and yet which are handled in perfect safety by those with the right kind perfect saety
of knowledge.

[^2]
Satellite tracking by home computer - 2

Formulae and programs

by Neoklis Kyriazis, B.Sc.

Part one off this article on a tracking system for circular orbiting satellites controlling aerial azimuth and elevation angles, and aerial rotators and their mountings. This section concludes the article, describing formulare and a Basic/machine-cod programi for the Wireless World
scientific computer. The program uses the formulae to process satellite orbit parameters and converts resulting data for use with the interface.

The complete program consists of two parts; a BURP MkIII program to handle numerical computations and a machinehrough the inface all mollor control through the interface. All satellite tracking
variables are processed in the BURP program so, thanks to the CALL instruc tion of the MkIII minitor, the machine code program need not be changed when orbit parameters change. In the machine-
code program some subroutines are used to carry out the main task of controllin the aerial rotators and others are used to check hardware. Both program explanations. refer to the interface and rotators described in part one of this article. But formulae relating to satellite orbit calculations need to be given.

Formulae
The following formulae, presented in a programming language, outline the proceure for finding azimuth and elevation angles for a satellite.
$F s=\arcsin (\sin a \sin (2 \pi t / P))$
where $F s$ is the sub-satellite latitude, a is the orbit inclination and t is the time
elapsed after EQX (equatorial crossing) d
$G s=G x+W e+\arccos (\cos (2 \pi t / P) / \cos F s)$
where $G s$ is the sub-satellite longitude, $G x$ is the EQX longitude and We is the rotational speed of the earth which is 15%. If he orbit inclincation is less than 90° then x should be negative.
and
$d=\arccos (\sin F s \sin F q+\cos F s \cos F q \cos n)$
where $G q$ is the station longitude and $F q$ is he station latitude are required to give the
$A=\operatorname{arcos}((\sin F s-\sin F q \cos d) /(\cos F s \sin d))$

Table 1: This machine-code program uses data from the BUAP

$$
1200
$$

where A is the azimuth angle and finally,
$E=\arctan ((\cos d-R /(R+H)) / \sin d)$
where E is the elevation angle, R is earth's radius in $\mathrm{km}(6367 \mathrm{~km}$) and H is the heigh $\sin n$ is used as an indicator for the azimuth bearing; if $\sin n$ is used as positive A must be adjusted to $360-A$ for a western bearing.

Machine code
The complete machine-code program is erface is completed it should be connected to the computer with the rotators disconnected and RUN 1775 typed into the computer to start a test routine that sends out a serial character from the keyboard to the B, C, up to O are typed in all the on/off combinations of RLA to RLD should be obtained in binary. This routine tests the peration of the shift register and relay drivers.
When
When the above is satisfactory, connect the rotators and type in 16 FO . The azi-
muth rotator should run in a counter clockwise direction until it reaches its stop, when the elevation rotator should run counter-clockwise until it reaches its stop.
Now both motors should run until the Now both motors should ren until the This routine is used to set the aerials in the efence position, chosen as due south in the horizontal position, and to set the locations 165 C and 165 D to 0018 . These loca-
tions hold the current position of the aerial and are used by the routines that control aerial rotation direction. This routine can be used when the aerials or program lose heir synchronization when, say, the computer is reset while one rotator For manual rotation of the aerials the routine at 1730 is used which first checks if S_{2} of the interface circuit is open and then requests azimuth and elevation angles given as two-digit numbers to the nearest 0°, e.g., 0503 for 50° azimuth and 30° elevation. When the ready signal is ob ained the space bar must be pressed to Thart the program
The interrupt service routine starts a the MM57109 and adding $1 / 360 \mathrm{~h}$ to it, e., 10 seconds is incremented each time i.e., 10 seconds is incremented each time a addresses is made by the interpreter in the
memory reserved for variables after the list of line numbers at the end of the program Each variable name is stored in two bytes with the second character first. For single character variables 3 A is used as a dummy
second character so T is listed as 3 A second character so T is listed as 3 A 14
followed by 631 F which is the reverse order address of the last (rightmost) of six bytes that contain the value of T . The firs four bytes contain the mantissa in the re verse order while the fifth is a sign byt
and the sixth the exponent and the sixth the exponen
265941310 B 01 and the decimal point is assumed to be between the two most significant digits in the fourth byte. The list of variables is made during a run so i the memory location of the variable may also change. After a dummy run of the program with S_{2} closed, use FIND 3A 14 to find the address of T. If the address of T has changed, insert it at locations 1608 The routine called at the end of line 12 of the BURP program, starting at location 1624, selects IM2, loads the interrupt re gister with HEX 16 and then jumps to location. 1656 and waits for an interrupt to set up the interrupt register for mode-two interrupts.
The routine at line 34 of the BURP program is called when the elevation angle and waits for an interrupt by jumping to location $1656{ }_{6}$. This routine is used only for time-keeping.
Line 42 of the BURP program calls the routine at location 1636 when the elevation angle is greater than -5°. This routine is a pass and when the programs are being tested. When called this routine check whether switch S_{2} is closed and if so jump to 1656 then returns when an interrupt is received from the interface timer. If S_{2} is
open the bytes containing the two mos significant digits of the azimuth and elevation angle variables (A and E in the BUR program) are loaded into the D and E registers of the Z80
Une above the BURP program is altered the above mentioned bytes will be in loca-
tions 1543 and 1 EEF ; otherwise the byte will change and should be entered in loca tions 1644,1645 and 1648,1649 in revers order as follows. Use FIND 3A 01 and the memory string holding A and E then put the address of the bytes to the left of the sign byte in the locations as above Remember that the starting address of A and $3 A 05$ refers to the rightmost byte in the string, which holds the exponent. After the D and E registers are loaded an AND 3 F operation is carried out to lim their maximum values to 39 . This operation is required as the number cruncher When all the number juggling ished the subroutine at 165 E is called to activate the aerial rotators. The H register

This aerial system is used by the author for tracking Oscar satellites. The aerial to the fort 435.1 MHz Both aerials are mounted on the same shaft supported in the middle by the elevation rotator which is mounted on he azimuth rotator
holds the command word for the rotator controller and the L register stores the fotator cam switch condrol forward H register cond and start/stop functions of the elevation and bits 2 and 3 the same function for the loads the position of the aerial suto the BC register while rotation is carried out.
If the position of the aerial correspond with the requested position the subroutin returns without action. If the two position stop/start flags will be set or reset as nece sary and the subroutine at 16 E 4 called to send the contents of the H register to the controller in serial form.
Next, the rotator cam switches are mo nitored at 20 ms intervals via port 00 and previously stored in the L register. The subroutine at 1780 is used to generate the delay. If a switch setting has changed the orresponding shift register, B for azimuth mented. To save time, azimuth and eleva tion angles are controlled independently. When both azimuth and elevation angles in the BC register are the same as thos
requested in DC register the subroutine stores the new position in 165C and 165D and returns to the BURP program when an
interrupt is received.

The BURP program Starting at line 2 of Table 2 the program requests the following data. ORBIT
TYPE: If this request is answered with 1 the system tracks an ascending orbit. If 2 is entered a descending orbit is tracked. This
nformation is used later in the program. for calculating whether the satellite will pass north of the station. EQX LONGITUDE and EQX TIME: The first request is for the satellite's equator crossing longiequator crossing time in hours and decima parts of an hour to two places, e.g., 19.85 hours.
In line 4 the real time in hours and converted to decimal parts of an hour by the program in this case. Data from line 200 is read in line 6 . This data is the station's longitude west, the station's latitude, the height of the satellite above the
earth in km , the orbit inclination earth in km , the orbit inclination and the orbit period in minutes. For the Amsat
Oscar 8 and my QTH in Limassol, Cyprus, line 200 of the program reads as follows:
200 DATA 326.75 34.72 877 99.99 103.2 This line is not included in Table 2. An circular orbiting satellite can be tracked if Further shown above is known.

Further in line 6 and then in line 8 the

Table 2: The BURP program for satellite tracking calculations. Variables such as
satellite height, orbit inclination and station position, are contained in line 200 satellite height, orbit in
described in the text.
$\begin{aligned} & 002 \text { INPUT "ORBIT TYPE" N " "EQX LONGITUDE" L "EQX TIME" } Z \\ & 004 \text { INPUT "TIME NOW: HOURS" H"MINUTES" M IT=HM } 60 /+\end{aligned}$
$\begin{aligned} & 006 \text { READOOHIPIA=OSNISIN } \operatorname{SIN}-!\mid F N=2 A=180 A- \\ & 008 \mathrm{~B}=\mathrm{AP} * 360 /!\mathrm{C}=0.25 \mathrm{~A} *-\mathrm{ACOSOCOS} / \operatorname{COS}-1-\end{aligned}$

$$
\begin{aligned}
& \begin{array}{l}
012 \mathrm{H}=\mathrm{H} 6367 / 1+\mathrm{REC}!\mathrm{P}=21600 \mathrm{P} / \mathrm{ICALL} 1602!\mathrm{CALL} 1624 \\
014 \mathrm{~T}=\mathrm{T} Z-!\mathrm{D}=\mathrm{PT} 1 *!\mathrm{F}=\mathrm{DSIN}!\mathrm{D}=\mathrm{DCOS}!\mathrm{J}=\mathrm{FI*} \mid \mathrm{Y}=\mathrm{J} \operatorname{SIN}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
I N=C S \text { SIN } \\
018 \mathrm{~S}=\mathrm{S} \text { COS }
\end{array}
\end{aligned}
$$

$\begin{aligned} & 020 \mathrm{E}=\mathrm{UH}-\mathrm{V} / \mathrm{TAN}-!\mathrm{A}=\mathrm{JBU}-\mathrm{CV} * / \mathrm{COS}- \\ & 022 \mathrm{R}=6367 \mathrm{~V} * \mathrm{EG}+\mathrm{COS} /!\mathrm{G}=6367 \mathrm{G} * \mathrm{PI} * 180 /\end{aligned}$
$\begin{aligned} & 024 \text { IF } X<0 X=X 360+ \\ & 026 \text { IF } x>360 X=X 360-\end{aligned}$
$\begin{aligned} & 026 \text { IF X }>360 X=X 360- \\ & 028 \text { TOPID=THMS IIF }>0 A=360 \mathrm{~A}- \\ & 030 \text { PRINT "TIME:" }\end{aligned}$
$\begin{aligned} & \text { 2 } \\ & 30 \text { PRINT "TIME:" } \mathrm{D} \# 4 \text { I IPRINT " AZIMUTH:" A\#1, " ELEVATION:" } \\ & \text { E"SLANTRANGE:" }\end{aligned}$
O2 ERINANT RANGE:"R
$\begin{aligned} & 034 \text { IFE } E=-5 \mathrm{CALL} 162 \mathrm{~F} \text { !GO } 14 \\ & 036 \mathrm{IF} W>0 \mathrm{~A}=180+1 \mathrm{E}=180 \mathrm{E}-\mathrm{IF} \mathrm{F}>360 \mathrm{~A}=\mathrm{A} 360-\end{aligned}$
$\begin{aligned} & 038 \mathrm{~A}=\mathrm{A} 5+10 / \text { INT IIFA }<10 \mathrm{~A}=\mathrm{A} 40+ \\ & 040 \mathrm{E}=\mathrm{E} 5+10 / \text { INT IIFE }<10 \mathrm{E}=\mathrm{E} 40+\end{aligned}$
$\begin{aligned} & 040 \mathrm{E}=\mathrm{E} 5+10 / \text { INT IIIF } \\ & 042 \text { CALL } 1636 \text { !GO } 14\end{aligned}$
program calculates two angles, A and C , which are used in line 10 to calculate
pointer called W. If W is positive the satellite will pass north of the ground station. When W is positive it is used later in the program so that the limit stops on the rotators are avoided as discussed in part
one of the article. Later in line 10 and then in line 12 calculations relating to satellite tracking begin. Satellite height and orbit inclination and period (H, I and P) are redefined for further use in the program.
The call of 1602 at the end of line 12 is needed to keep the correct time, and call 1624 to initialize the interrupt register. Processing of the formulae mentioned earlier begins in line 14 with the calculation of the relationship between real time
and EQX time and other auxiliary values. and EQX time and other auxiliary values.
The formulae are broken down for the program to reduce computing time. Fina variables of the program which may be useful are D which is converted real time (using the HMS statement), A the azimuth
angle in degrees, E the elevation angle in degrees, R the slant range of the satellite, X and Y the sub-satellite longitude and latitude and G the ground range in relation to X and Y. These results are printed on
the v.d.u. by lines 30 and 32 . If the elevation angle is less than -5° the 'non-active' time-keeping routine at 162 F is called in line 34 and after an interrupt signal a jump to line 14 is made. The real-time variable T is incremented by
tine.
Where the satellite is to pass north of the earth station azimuth and elevation angles are adjusted in line 36 to avoid action of the azimuth-rotator limit stop. In lines 38
to 42 the azimuth and elevation angles are finally converted to the nearest integer representing them in steps of 10° and the tracking routine at 1636 is called. After aerial rotation the sequence is repeated
from line 14 .

Operating the system After the aerial-control interface has been tested using the procedure described earlier the system is ready for final setting up.
When the routine at 16 F 0 tors will be at 180° azimuth and 0° eleva tion so the aerials can be positioned on the rotator mountings but remember to leave slack in the cables to allow rotation to the limit stops.
To track a satellite enter the DATA statement at line 200 but before running the BURP program turn on the aerialcontrol interface and stop the timer by opening switch S_{1} (see the circuit diagram in part 1 of this article). Type RUND @ 2 into the computer and then supply the data
requested by the program. When real requested by the program. When real time
is equal to the time requested in line 4 of the BURP program the timer of the interface should be started by closing switch S_{1} of the rotator-control interface. The program will run 10 seconds later after a
pulse from the timer on the interface is received.
Tracking will commence when the elevation angle is greater than -5° and S_{2} of the interface is open. If S_{2} is closed track-
ing will stop and if the azimuth running the program and rotator will no longer be synchronized. Problems with synchronization will also be encountered if the program is reset while either rotator is running. The routine at 16 F 0 can be used
to solve synchronization problems. to solve synchronization problems. terface timer can be stopped when the computer's ready light comes on and another satellite can be tracked with the same program but using new data. Accu-
rate timing signals are available on the rate timing signals are available on the
short-wave band at 5,10 and 15 MHz and on 60 kHz MSF (Rugby).

Electrics and Electronics for Ṣmall Craft
by John French.
254pp., hardback.
Granada , 15.50 . Mr French is clearly a mariner with many years
of bitter experience. He has been concerned
with the design, installation and maintenance of with the design, instalation and maintenance of
marine equipment for thirty years, and the
second edition of his second edition of his book compels one to
wonder at the temerity of electronic engineers in designing such equipment at all. Deterioration

of hull fittings and even of the wooden or g.r.p. hull isself, the hard work of calibration, interference and the crippling cost of it all are such as to | make lind. |
| :--- |
| eabbers fee guiry at having such an |

Nevertheless, his book is a model of lucid
explanation of highly technical equipment in an Nevertheless, his book is a eqoipment in an
eeplanation of highly technical equipmo
accessible manner - its selection, installation accessible manner - its selection, installation
and maintenance. Part 1 is on electrical matters and maintenance. Part 1 is on electrical matters

- corrosion, interference suppression and bat-
teries - and is followed by twelve chapters on - corrosion, interference suppression and bat
teries and is followed by welve hapters on
every type of electronic installation to be found every type of electronic installation to be found
in small craft, from echosounders to radar and in spail craft, from echosounders to radar and
hyperbolic navigation systems. Mr French is hyperbooic navigation systems. Mr French is
extremely thorough and includes a great deal of
deaijed information, but nonetheless writes in a detailed information, but nonetheless writes in a
humorous and sympathetic style: not many humorous and sympathetic style: not many
authors would introduce a chapter on interference suppression with a quotation from
"Paradise Lost", "Paradise Lost."
The Alien, Numbereater and Other Programs
for Personal Computers for Personal Computers
by John Race.
86pp., paperback.
MacMillan,
£3.50.
$£ 3.50$.
Dr Race presents fourteen programs, mostly in
.
Basic, ,which are intended as worked examples
of techniques. The progrens of techniquas. The programs consist, in the
main of games, but one or two are mathematimain, of games, but one or two are mathemaiten
cal or problem-solving, such as the one written cal or problem-solving, such as the one written
by Tom Race for finding a set of non-primes, and a program for cyphering or decyphering messages. There is also an 80 -column histogram
ploter.
Each program has been selected to illustrate a
number of techniques, number of techniques, which are listed at the
start, such as recursion, machine-code programstart, such as recursion, machine-code program-
ming, special graphics, heuristics, etc. Some of ming, special graphics, heurisics, etc. Some of
the programs described need a printer or a second cassette deck to work
The programs are all on a cassette, which can
be obtained from MacMillan.
Amateur Radio, by Goidon Stokes and Peter Amateu
Bubb.
Bubb.
192pp., hardback.
Lutterworh Press, $£ 8.95$.
Lutterworth Press, $£ 8.95$.
Mr Bubb is a lecturer and coach for the Radio Mr Bubb is a lecturer and coach for the Radio
Amateur Examination and Mr Stokes, also an amateur, is a a professional writer., Between them, they have produced a book which, it is
claimed, contains the relevant information to claimed, contains the relevant
enable readers to pass the RAE.
The basics of electricity and electronics take
up six chappers and are trated in up six chaperers and are etrated in such a way
that no previous knowlege is needed - the that no previous knowledge is needed - the
text is extremely easy to read. Modulation, retext is extremely easy to read. Modulation, re--
ceivers and transmitters, aerials, propagation, measurements, operating procedure - all is
dealt with in a manner that recognizes the varied dealt with in a manner that recognizes the varied
background of candidates for the examination. background of candidatess for the examination.
There is no mathematical treatment and some of the description is so limited that there may be a
danger of falling short of the exam. requiredanger of falling short of the exam. require-
ments. The book should, however, be a useful introduction to the subject for those lacking any

Designing with microprocessors

$11^{\text {- }}$ - Direct memory access systems
by D. Zissos assisted by Glen Stone, Department of Computer Science, University of Calgary, Canada

rig. 3. Simplified form of a d.m.a. system.
environments (for example, patient monioring in hospitals), where high sensitivity and fast responses are essential.

Basic d.m.a. configuration
A simplified form of a basic d.m.a. confiAration using either the block transfer the cycle steal mode, is shown in Figure 3. The interface consists of two components, d.m.a. controller and the peripheral nterface, the basic functions of which are sollows. The programmer sends to the tions) three items of information specifying (i) the starting address, (ii) the size of he block, and (iii) the direction of transr, followed by a 'go' command. On receipt of the "go command, the d.m.a. by pulling enable signal E in Figure 3 high ($\mathrm{E}:=1$). In its activated state, the interface monitors the status signals of the peripheral, and requests the microprocessor to

Fig. . 4. Step-by-step operation of d.m.a,
system.
go on hold (HOLD: $=1$) when the peripheral is ready. No further action is taken until the microprocessor responds
(HLDA: $=1$), at which time the interface generates the appropriate command signals needed by the memory and the peripheral. The process repeats itself. That is, piece of information is transferred between memory and the peripheral
whenever the microprocessor is on hold and the peripheral is ready. Each time a piece of information has been transferred between the memory and the peripheral,
the d.m.a. controller increments/decrethe d.m.a. controller increments/decrements the word count. When the word count becomes zero, the controller de-activates the peripheral interface ($\mathrm{E}:=0$), and generates an end-of-transfer signal, denoted by ϵ in Figure 3 . Signal ϵ, programmer that the block transfer has been completed. The step-by-step operaion is flowcharted in Figure 4
Note that once the initial conditions

have been set up, data transfers in d.m.a. systems take place autonomously, that is with no programmer intervention.

References

Zissos D. "System Design with Microproces-
sors," Acad

Electronic Pocket Book, by Andrew Parr.
350pp., paperback.
Newnes Technical Books, $£ 5.60$.
This is a heroic attempt to cover, in 340 pages of largely non-mathematical text, the whole gamu of electronics. It starts with the atom and touches on circuitry, components and systems
from transistor amplifiers to computers in industrial and domestic use.
The book is the fourth edition of a well-
known title one in 1976. It is by no means a detaile textbook, but is rather an introductory view of the many topics covered: the writing is simple
and direct and no background knowledge is assumed. Coverage of individual subjects is necessarily limited and fairly superficial, but the book will serve as a convenient lead-in for the newcomer, who can then follow up his particu-
lar interest in more exhaustive texts: a list of suggested further reading would have been use-
ful to this end. ful to this end.
Dictionary of Telecommunications, by S. J. Aries.
329pp., hardback.
Buterworth
A companion volume to those by Roberts, Amos and Jackson on related electrical and

clusively with those terms used in the broad field of communications, overlapping, to some
extent, the others in the set in its coverage of radio, electronics and audio. Expressions used
in in the US are explained in terms of their UK
equivalents, and a list of acronyms and abbreequivalents, and a list of acronyms and abbre-
viations appears at the end of the book, some also being given in subsidiary positions in the main body of the text.
Mr Aries is a member $\underset{\text { mittees working on units and terminal }}{\mathrm{Mr}}$. muthority of the entries and terminology: the on with a high degree of confidence.
Guide to Acoustic Practice, prepared by K. A., Rose.
95pp., paperback.
BBC, $£ 10$ (airmail plus $£ 2.31$) Engineers and architects at the BBC have accu-
mulated a great deal of experience over many years in the design of studios and control rooms, which has been distilled and prepared for publi-
cation in the form of a guide. Until recently, the cation in the form of a guide. Until recently, the
guide has been in constant use inside the BBC, but demand from overseas has forced the C

Insulation to reduce external noise and acousic treatment for internally generated sounds are both covered thoroughly, a further section
dealing with the effects of studio furniture and dealing with the effects of studio furniture and
fittings on sound characteristics. There are two sections on noise borne by service ducts and generated by plumbing, lifts, electrical equipment and generators. Nearly half the book is
devoted to drawings and tables relating to the text. This is a remarkably concise and practical
work and is highly relevant to other structures work and is highly relevant to other structures
such as conference halls and music rooms where the sound quality is important. As is pointed out at the beginning, it is no use glueing a few to disappear.

Oscilloscopes by Ian Hickman,

by Ian Hickman,
122pp., paperback.
Newnes Technical Books $£ 3.45$ This is addressed to school physics students and technicians, as well as to those with an interest with no pretensions to depth, and provides an with no pretensions to depth, and provides an
easily read guide to modern oscilloscopes and their use, which should help students ap-

1000 siskiliccomes

Telequipment 1000 Series The choice is yours

 accuracy to $\pm 3 \%$, with improved stability as a bonus. base specifications, trigger bandwidths and performance characteristics have been substantially
Better Display
The D1016A also has a new CR The size is just the same easy-toview $10 \times 8 \mathrm{~cm}$ but with an internal graticule and a quick heat cathode. It has a "GY" phosphor which is a near equivalent
to the P31 but is more efficient actinically at low beam currents and high writing speeds. A Choice of Bandwidth 10 MHz or 20 MHz with 5 mV
division sensitivity at full division sensitivity at full
bandwidth and 1 mV division 5 MHz in the D1016A, 4MHz in the D1011, and a choice of display modes; Algebraic Add, True X-Y, Channel 1 and 2 Chopped or Alternated, Channel
2 only, and Channel 2 Inverted. For further details send reply For further detal
coupon today.
「Please send details of the -7 | D1016A \square D1010/D1011 \square |
Name $\square \mid$

1 Position
I Company
1 Address

Telephone

Tektronix U.K. Ltd P.O. Box 69, Harpenden, Herts AL5 4UP Telex: 25559 .

Also available from Electroplan.
thought we only supply cases...you'd be quite wrong

Although
suppliers far better known as West Hyde Developments Limited now offer a superb range of Optoelectronic Components from Mezel LEDs is available in 3 mm and 5 mm diameter in a variety of colours, with both concave and convex reflectors. Many, exciting variations are offered including dual colour and flashing types, water
resistant types and LEDs with built-in resistors. resistant types and LEDs with built-in resistors.
In addition to this Optoelectronic range, West Hyde supply the complete selection
highest quality Mentor plastic and aluminium knobs, in a wide
variety of sizes and styles. Mentor also produce a superior range of carrying handles for all ypes of electronic equipment.

For more comprehensive

or standard 3 mm \& 5 mm , red, green yellow, orange and amber LED's with clear, transparent or diffused lens?
for square, rectangular, circular stepped, domed, triangular and arrow shaped LED's for use as function indicators and bar graphs etc?
. for nickel plated brass or matt black anodised aluminium indicators, with or without LED's sitting recessed or forward mounted?
for end stackable, red, yellow or green lensed arrays capable of accepting 2, 3, 4 or 5 LED's, thereby enabling any number of segments to be selected.

> YOU ARE? WELL
> LOOK US UP OUR
> LED
> INDICATOR
> PRICES
> WON'T MAKE
> YOUR EYES WATER

Zaerix Electronics Limited
46 Westbourne Grove, London W2 5SF, Engla
Tel: 01-221.3642 Telex: 261306
WW - 046 FOR FURTHER DETAILS

CES, Chicago

Round up from the largest American consumer electronics s'how
by George Tillett

This year the Summer Consumer Electronics Show in Chicago was larger than ever with a record breaking attendance of well over
60,000 . Almost 900 exhibitors were spread over 550,000 square feet of space and 300 demonstration rooms at adjacent hotels: As with recent shows, main interest centred on video, emphasized by the impressive
space age array of giant satellite dishes outside the main entrance.

Video disc players were naturally attracting a lot of attention - in fact, you could hardly miss them, stacked as they were to make an eye-catching video wall. Although the new RCA Selectavision model has only
one audio channel and lacks many of the one audio channel and lacks many of the
features provided by its competitors, it has been popular, mainly because of its Iower price. In terms of basic performance, it is comparable with the VHD and laser models in spite of its stylus-in-groove de-
sign. Critics described it as "a giant step sign. Critics described it as "a giant step
backwards" but this hasn't deterred companies like Sanyo and Toshiba who have also opted for this system, now called CED. The VHD system developed by JVC also uses a stylus but it glides over the models were shown by Sansui, Quasar and Sharp, the last-named deciding to go with
VHD "because of the superb stereo VHD "because of the superb stereo sound". Sansui were also showing a CED which kind to make.
Laser players are made by Pioneer and Magnavox and the former has signed agreements with Columbia Pictures, Covent Garden Productions and many Hollywents are being made between the various film makers so the same movies will eventually be available in all three formats. CED, VHD and Laservision. So the situation is a little better than the quadraphonic
fiasco when the competing manufacturers didn't even agree on the spelling of the name!
Turning to video cassette recorders, well, we have had to live with Beta and
VHS recorders for some time but it seems that we'll have to contend with another standard or standards for portable models. Technicolor introduced a miniature cam-era-recorder last year which used $1 / 4$-inch tape in cassettes not much larger than $\overline{\text { See also article on vidoo discs elsewhere in this issue. }}$

Pressure zone microphone claims flat amplitude response at all angles of incidence by virtue of tiny phas cancelling gap.
those made for audio and weighing only two ounces. But now Japanese photodisappearing home movie market, have turned their eyes to video so to speak Funai and Canon have already introduced "Camcorders" and other manufacturers with the Betapak described as the "world's lightest VCR" at just over 9lb. A great many Beta and VHS portable and domes tic models were introduced at the Show and Sansui. Prices have come down to meet the video disc competition but the tape itself is expensive. One reason is the high cost of real-time duplication but the situation
could change. Mitsubishi were showing could change. Mitsubishi were showing a
high-speed video tape duplicator which uses a process called "video anhysteric transfer printing" to copy a four-hour tap in four minutes. It's expensive but the quantities involved are high enough to jus-
tify the outlay for many cassette suppliers. There are rumours of a video disc system with recording capability but I can find no hard evidence. On the other hand, it true that a company in New England ha plans for a playback-only video cassette
machine to cost about half the present models.
A great number of new cassette decks were to be seen: most of the top model boasting automatic bias, equalization and C noise reduction while Marantz, Teac,

Yamaha and Technics have plumped for dbx in some of their models. Competition between dbx and Dolby has increased recently with the Dolby Labs emphasizing
the greater dynamic range plus noise reduction over the whole band. Dolby's answer was the HX circuit and Dolby C, plus the reminder that compatibility is mos important: as there are some 100 millio Dolby decks out there!
sion) reciords were bein (compatible expan Sound Concepts, MXR, Phase Linear by Audionics, all of whom make the decod ers. At the moment, only four records are actually on the market but CBS say that all Furthermore, their goal is to make it the industry standard for recording. Warner are believed to go along with the idea but at the time of writing, nothing ${ }^{\star}$ has been pany. In some respects the CX process is like the dbx system: it uses the same $1: 2$ exparision ratio in playback but it does not function over the whole dynamic range. No pre-emphasis is used in the encoder
and CBS claim that these records will be "audibly acceptable" when played without a decoder. Amplitude response will be unchanged and noise level will be no worse. The decpder parts are relatively inexpensive so eventually, if the idea catches on,
wee will see this facility built-in to many record players, receivers and amplifiers. Another noise reduction unit was being demonstrated by National Semiconductor. This is the DNR and it is in the form of a single i.c. with two channels. It works on
the same principle as the Burwen-KLH * RCA Records have since agreed to adopt the * RCA Record
system introduced some years ago. A dynamic filter keeps the bandwidth narro when the signals are loud enough to mask any background noise. Attenuation commences above 800 Hz and the attack time is time of 50 ms . Effective noise reduction is time of 5 mm . Effective noise reduction is
claimed to be 10 dB (CCIR weighted) but it doesn't require encoded material as it is
single-ended single-ended.
Crown's PZM microphone is now being
used by many recording studios as well as used by many recording studios as well as
for sound reinforcement at such places as for sound reinforcement at such places as
the Hollywood Bowl and Wolftrap Performing Arts Center. It uses the prin ciple of the pressure field where there is no direction of propagation. Within a few mil-
limeters of a large surface, sound levels from a pair of equal signal's add coherently because in close proximity to the surface, the particles are still in-phase as they accel erate after being brought to a stop by the
boundary. So two engineers, Long and Wickersham, mounted a pressure microphone above a Formica surface with a tiny spacing between the diaphragm and the surface, hence the name "pressure zone microphony". It is claimed that no
signals can arrive on axis but can only enter at the sides, so the amplitude response is flat at all angles of incidence. The standard model uses an electrret capsule and it is mounted on a five-inch square plate. By using various shields, a wide
range of directional characteristics can be btained, without affecting amplitude response. PZM microphones have been particularly successful with recordings of the piano and large-scale choral works.

Loudspeakers

As usual, there was a tremendous variety of loudspeakers at the Show, rang ing from tiny shoebox systems with giant four-inch bass drivers to huge behemoths costing a sizeable fortune. The Quad electrostatic attracted a lot of attention, so range enclosure made from an acoustically dead plastics-cement mixture. The Sony Esprit APM-8 is a rather unusual floorstanding model using four drivers, aill with flat diaphragms. The bass radiator mea-
sures 125 square inches and is driven by four speech coils and it is claimed that this multi-drive system extends the piston range by two octaves. RTR were demonstrating a new electrostatic panel consist-
ing of two vertical arrays of twelve units. One section handles frequencies from 130 Hz up to 2.2 kHz while the other radiates from 2 kHz up to beyond 20 kHz . It is, of course, designed to match a subdome tweeter which has a plastic diaph ragm reinforced by a geometrical arrangement of hard fibre threads. Ferrofluid is used in the magnetic gap and the low frequency limit is 750 Hz while the first reso nance occurs at 40 kHz .
electrostatic panels in an umbrella-shaped array with four 6 -inch bass drivers which fire upwards. Low frequencies are aug.
mented by two 10 -inch passive radiators.

Looking like any combined tv, radio and audio cassette player, this is actually a video cassette recorder and 20 cm colour tv.

According to RTR Industries, Dupont's Kevlar fibre - five times stronger than steel - in a special pattern allows behaviour to be modelled by a compu ter.
Most top models of cassette deck feature automatic bias, equalization and sensitivity circuits.

The built-in ESL matching amplifier claimed to handle peaks up to 1200 watts.

In brief... receivers are provide Yamaha's top receivers are provided
with a "spatial expander control" which is
claimed to widen the stereo a mage. It claimed to widen the stereo image. It appears to work by delaying a portion of
the signals from one channel and feeding the signals from one channel and feeding them to the other... The Carver company were demonstrating a new f.m. tuner
which, it is claimed, virtually eliminates multipath distortion. The detector circuit is called the "asymmetrical charge-coupled f.m. detector" but no other details wer
available. However, really works! . . . Digital audio records were demon ... Digital audio records were demonSanyo ... Onkyo had a cassette deck
which provided Dolby B \& C and dbx which provided Dolby B \& C and dbx
noise reduction... Mitsubishi were shownoise reduction... Mitsubishi were showoperated by voice commands. It makes announcements (your dinner will be ready
in three minutes!) and it has a tv screen for in three minutes!) and it has a tv screen for
menu displays or tv programs.

BBC radio on v.h.f.

Once again the BBC has announced that it is to ity of its transmissions on the v.h.f. bands. This will become necessary when there is an increase in interference from European stations on the years. Aubrey Singer, managing director of BBC
radio, has said that the first priority was to make radio, has said that the first priority was to make
the four national networks properly audible on the four national networks 'properly audible on
v.h.f.' This involves re-enineering exising transmitters to include a vertically polarisisd sig-
nal in addition to and equal in strength to the nal in addition to and equal in strength to the
horizontally polarised signal; in effect to give horizontally polarised signal; in effect to give
'slant' polarisation. This would improve reception for receeivers with vertical aerials, espe--
cially portable sets and car radios. There would cially portable sets and car radios. There would
also be a programme to build new transmitters
to provide a v.h.f. service to those areas not to provide a
provided for.
Another
Another long term proposal is a campaign to,
get the fixed and mobile services principally the get the fixed and mobile services, principally the
police and fire services, shifted to a different

EMP and thermionic valves

The electromagnetic pulse (EMP) produced by
a nuclear explosion high above the Earth could a nuclear explosion high above tele Eartr could
wreck telecommunications across a continent, according to Anth
Guardian of 2 July.
With the exception of several US Department
of Defence reports issued in 1977, the Bell Daboratories' EMP Engineering and Desil Principles (1975) and a recent three-part series in Science on the subject (May to June 1981), An Civil Defence is the first serious treatment. in Civil Defence is the first serious treatment.
Several monthly UK journals have carried material on the implications of EMP over the last three years, concentrating on the vulnerabil-
ity of communications links which employ emiconductors rather than thermionic valves, semiconductors rather than thermionic valves,
but none has generated more than a fleeting
response.
Any at
Any atmospheric explosion generates an
ectromagnetic pulse because of the interactio of the rapidly expanding ball of ionised gas with
the Earth's magnetic field, but in the case of a he Earth's magnetic field, but in the case of to produce a very powerful electrical pulse, resulting in peak signals of kV order (rather than ntennae, with devasting results on sensitive semiconductor r.f. stages. With much of NATO's military and business data (including trategic information) now spread by p.c.m. a dangerous blackout of communications and Ther vital data services. The principal effects in such an explosion are into an atmospheric charge (well-known Comp ton Effect) and the disruption of the ionosphere - the latter could clearly have serious implica-
tions for general h.f. communications. In theory
wave band. This has already been proposed by the WARC in 1979 but the regulations allow
some services to continue in Band II until 1995 . The services to continue in Band II until 19 be two European v.h.f. allocatio conferences in 1982 and 1984 and the BBC are Instituting their campaign now so that the
British negotiators will have decided British negotiators will have decided upon a
plan well in advance of the conferences. If the lll 88 to 108 MHz band became available for broadcasting, the BBC could go ahead with
plans to have a new v.h.f. network for Radio 1 , plans to have a new v.h.f. network for Radio 1 ,
full UK coverage on v.h.f. for Radio 4 and oossibly a separate network for educationa bersity. Each network would occupy a simila versity. Each network would occupy a similar
position on the tuning scale regardless of the ransmitter being used, and each sub-band
would be 2 regardless of the
ter would be 2.8 MHz wide.
In addition the BBC proposes to increase the
number of their local radio stations in England number of their local radio stations in England each year. There would also be some local sta-
tions in Scotland, Wales and Northern Ireland issue, p. 49 and news report December 1978
issue, p.50.)

Assuming that The Archers continues, the radio of the future may have a display similar to making test transmissions with pogramme labelling subcarriers, or "that they have been call it, for the past three years. If further tests are successfull listeners with suitable microprocessor controlled receivers may be able to tune in by commanding a station, or
even a programme, without having to bother about wavelengths. The final form of the service has not yet been determined in full but it is suggested that programme labelling
data may include such information as music titles, sports scores and future programmes for data may include such information as music titles, sports scores and future programmes for
display on the receiver's read-out. Among other countries experimenting with programme labelling are Sweden and France, who have systems similar to the BBC's, and talks are under way in conjunction with the EBU to agree a common European system. More details
the optimum height for such an explosion, were but no actual tests have been possible because of the Test Ban Treaty on atmospheric exploWhen a Russian MiG-25 fighter plate flown into Japan by a defector in 1976, it was found that the body shell had been arranged to form a Faraday cage and, even though the tur bine technology was very advanced, on-boar
radio communications equipment consisted sub-miniature valve circuits, suggesting that
Russian designers Russian
mind.

Thermionic valve equipment, while not in of safety, although designers will her mar balance the safety factor against the higher effiCon semiconductor devices. Communications satellitits are therefore
ighly vulnerable to EMP but it seems unlikely that Russian design strategy will involve the use o a thermionic valve equivalent of $1 . .5$. i. - it ould probably require the sending of bodies The Size of the Albert Hall into Earth orbit.
The last (observed) effect of EMP was in 1958 hen a nuclear explosion 250 miles above

Levy on blank tapes

Six of the main suppliers of blank tape have ers' Group. The Group consists of BASF, 3 M
Maxell, Memorex Sond Maxell, Memorex, Sony and TDK and has been
brought together specifically to combat any levy brought together specitically to combat any levy
on blank tapes reported to be recommended in
the the government Green Paper on copyright law
to be published son (at time of writitg) ne of writing).

Mr Bill Fulton, from Sony UK, acting as
chairman for the Group, said that the levy plan chairman for the rroup, saidy that he levy plan
proposed by the ecord industry was impractical prop unworkable. "The problem of home taping
and and unworkable. "The problem of home taping
has been grossly overstated. A levy would penalise, to an unfair degree, all tape users, whethe
they breach copyright or not," he said. "Consumer groups as well as organisations representing the professional interests of journalists, educationalists, businessmen, tape retailers and disc
iockeys appear to agree with us, and a broadly jockeys appear to agree with us, and a broadly
based campaign of opposition is planned." He likened such a levy to a levy on blank paper which would be used to compensate writers and
publishers in case copyrighted material were to publishers in cas
be reproduced.
The British

The British Phonographic Industry has bee
the main promoter of the levy. They claim to be the main promoter of the levy. They claim to
losing $£ 1$ m a day through breaches of copyright and say that the levy, which would effectivel
double the cost of blank audio tape, would pro double the cost of blank audio tape, would pro-
vide adequate compensation. Mr Fulton would vide adequate compensation. Mr Fulton would
not deny that some home copying from discs
was was carried out but challenged the reported extent of such breaches of copyright. "The fall in sales for which the record companies appea
to blame home taping must be due to othe factors within the industry. The development of low cost, high quality cassettes and hom
recording equipment has in fact helped th recording equipment has in ract helped industry by stimulating an interest in
rusic." music."
A levy A levy scheme would be fraught with prob-
lems, such as the lems, such as the proposed exemption for blin
people and for other categories. Another prob
lem in the administration lem in the administration of such a s sheme
would be how to apportion the income from the would be how to apportion the incores from the
levy to the record companies and artistes. Counterfeitiers, who are already selling inferior tape
disguised as the more popular brands, could disguised as the more popular brands, could
also forge the proposed levy stamp and get that also forge the proposed levy stamp and get that
money in addition. This could throw the whole market into confusion.

Used to correct the
angle of view of angle of view of photographs taken
from the air, the Wild OR1 orthophoto system is a high-
speed, computer speed, computer-
assisted differential rectifier. In producing
plans from aerial plans from aerial
photographs, the photographs, the
instrument takes into account the effect of
slopes in the terrain. slopes in the terrain.
The illustration show The illustration shows
the transformation of an oblique
photograph, photograph, of a
mosaic floor in Delphin mosaic frooo in Delp into a true-to-s

Dialled radiotelephone

telephones in their cars can now dial tirect have any number in the UK or to any of the phones connected to the international direct dialling
network in some 100 countries. This network in some 100 countries. This has bee made possible by the installation of equipment,
supplied by Pye Telecommunications, in four regional centres.
The former manually operated exchange in
London had reached full London had reached full capacity with more
than 3,000 customers. In order to allow more British Telecom are increasing the number of Radiophone channels by reducing the band-
width of each. Even so the capacity of the se width of each. Even so the capacity of the ser-
vice is still limited and cannot expand further unless the Home Office allocates more radio
bands. Many of Many of the existing customers are trans
ferring to the new service, which leaves som vacancies on the manual exchange. But there is
no need to rush to apply - there is a lon no need to rush to apply - there is a long
waiting list of applicants.

News in brief

The autumn bunch of exhibitions and conven tions includes the Business and Light Aviatio
Show at Cranfield Airfield, 3 to 5 Septembe the Video Show, West Centre Hotel, Fulham, London 16 to 18 October; Viewdata at the sam, venue, 4 to 6 November, The Sound Brad-
casting Equipment Show, Albany Hotel, Bir casting Equipment Show, Albany Hotel, Bir-
mingham, 29 September; Electronic Displays
'in, The Kensington Exhibition Centre, Lonming The Kensingtom Exhibition Centre, Lon
don, 23 to 25 Seppember; The West of Englan don, 23 to 25 September; The West of Englan
Electronics Show, Bristol Exhibition Centre, Electronics Show, Bristol Exhibition Centre,
15 to 17 September, Emag 8 , Cavendis
Laboratory, Cambridge, 7 to 10 September.

A radio amateur course is to be held at the
Gosforth Adult Association, near Newcastle Gosiorth Adult Association, near Newcastle
upon Tyne, starting in September. Further de
tails may be tails may be obtained
upon Tyne 668439
The Sixth Annual Microprocessor Workshop on Microprocessor Applications will be held
in the Computer Laboratory of the University in the Computer Laboratory of the University
of Liverpool on the 7 th and 8 th September.
Within the two days there will be some 22 Within the two days there will be some 22
lectures on. all aspects of microprocesso
hardware and software systems with a special hardware and software systems with a special
session on 'microism'. Details from Miss C. A Bryson, Microprocessor Workshop, Computer
Laboratory, University of Liverpool, PO Box Laboratory, University of Liverpool, PO Box
147, Liverpoon L69 3B

Following our story last month of the collapse
of the Rank empire, we have heard that the Mastercare service, owned by Currys, for after-
sales sales repair and servicing of electric and
electronic appliances is to take over the guarelectronic appliances is to take over the guar-
antee liabilitites of Rank Radio International. The Rank distribution warehouse in Militon
Keynes has gone to Binatone, and the Murphy trade mark to J. J. Silber, a subsidiary of Grea Universal Stores.

NRDC merges with NEB

 British electronic inventions like the Ambison-ics surround-sound system which hitherto have been commercially developed by the National aken up by a new, more vigorous organization
called the British Technology Group. This is the sult of a merger, recently announced by th ational Enterprise Board. The merger proposal has been on the cards for some time, but the cvernment, alarmed at reports of inadequacies in the existing system for exploiting British
inventiveness, has now brought it forward. The new BTG will be run much more like a private company, with an eye on profit, setting entering into partnerships with financial companies in the City of London. It will have about 300 m of investments in over 90 companies and
will be responsible for some 700 research and will be responsible for some 700 research and
development projects. Its general mode of operation will be to provide money to develop
inventions and new industral products and, inventions and new industral products and,
when they have reached a sufficiently commerwhen they have reached a sufficiently commer-
cial stage, sell them off as investments to private industry.
executive of the new organization is Bruce Willmott and his deputy is Dr Jim Cain.

TV subtitles for the deaf

There has been much correspondence in Wireovision of earphone sockets, for example. These are no good at all for the completely deaf but there have been some advances on their
behalf in the form of Ceefax and Oracle bubtitles. Television viewers saw some examples of the current art of subtitling during the recent
Royal Wedding outside broadcasts. Some of thé Roya Wedding outside broaccasts. Some Now the Independent Broadcasting
Authority, together with the Independent Authority, together with the Independent
Television Companies Association and the Uniersity of Southampton has publisherd Guide-
nes for the subtiling of television programmes by obert G. Baker. Mr Baker is a psycholinguist who specialises
hard of hearing.
The 18-page publication includes detailed recommendations on the display, editing and preparation routines for subtitle captions. It
emphasises both the action and the captions; the emphasises both the action and the captions; the subitiling all obvious speech and relevant sound effects, and by placing subtitles
While captioning should not try to reproduce he entire text of a programme, the Guidelines diomatic speech forms. Bad language should dot be bowderised, but could be reduced in requency. Such idiomatic phrases as 'he gets ny goat' are usually better presented as 'he
annoys me'. [This could be very confusing to hose who can lip-read - Ed.
The Guidelines includes practical recomof punctuation and upper and lower case characers, on the creative use of colour and, for xample, on the use of flashing characters to ringing telephone.
Copies of the publication are available from he IBA Engineering information Services, Crawley Court, Winchester, Hants sO21 2QA,
from ITCA, or from the author at the Department of Electronics, The University, South-
ampton.

Industry, education and riots

"The importance of computer games as a learn ing tool should not be underestimated" saic
Kenneth Baker, Minister of State for Industr and Information Technology at the Englis peaking Union in Cambridge.
"This is one way of introducing young people or it - so long as space invaders do not entirel take over the inventive energies of young "we.
"We need more young people studying the kills industry needs; wo produce around year; the Japanese ten times this number. At ' uage, 300,000 Maths, only 10,500 Computer Studies. We must give this fourth ' R ' the push it needs. About 1,700 students entered university to stud
enough
" 50 per our companies still do not use microelectronics. I recently announced Inormation Technology Year for 1982 to tackle
his. There are huge markets open to us; $£ 50$ billion per year world-wide, expanding 10 per cent per annum in real terms. We need to achieve a large slice of this cake; currently we tremendous for wealth and job creation. The huge range of industries that make the products and provide the services under this generic term
Information Technology, stretch from satellites to computer games. But let me emphasise as clearly as I can that if they are going to be the ing decade add if we cannot make the most of ng decade and if we cannot make the most of
this enormous opportunity then we will not be able to create in our society the wealth needed to underpin the huge social and educational expen

The heuristical approach to flat panel displays
nventor of a number of display systems includ ing the Nixie tube, Mr Paul Kuchinsky, has
sarted a company to explore and develop advances in flat panel displays. Mr Kuchinsky assumes that most of the cur-
rent work on displays, in gas plasma, liquid ent work on displays, in gas plasma, liquid
crystas, electrophoretic and others, all show romise and have specific advantages in diffrent applications. He also believes that too manufacturing processes and not enough attenion is paid to using advanced automated techniques, the availability of outside resources or
the understanding of materials and processes. His studies with the late John G. Bennett, a British humanitarian and educator, led Mr Kuchinsky to identuy cualities: "instruments of discovery and communication which unify an organisation and lead to creative achievements on a greatly reduced timescale. For this reason
he has called the company Quantum Systems. His official title of president and heuristician to the company indicates that he intends to use the heuristical method; a method of learning hrough self-discovery and trial and error. He
says that the flexible approach to management says that the flexible approach to management
that are implied in his methods "would triple the performance and profits of almost every

- Two flat screen electro-luminescent display
panels, one intended mainl for messages and panels, one intended mainly for messages and
the otther for general graphics, have been
launched in the UK by Impectron Limited. The

An argument put to me against Information o. unemployment is more products, well designed, well produced, well marketed and pro-
duced on time, which meet the nation's needs. Many occupations such as chimney sweeps, corn chandlers, cart-builders and others have one from the Department of Employment lisu, pations, such as data processors and system pations, such as data processors and syste
analysts. As the Prime Minister said when
pening the recent robotics exhibition, we opening the recent robotics exhibition, we
damage job creation opportunities by refusing tomage jot creation opportunities by refusing
to adapt to change, and by not grasping the opportunities. As recently as 30 years ago a
report estimated that the UK would only ever report estimated that the UK would only ever
need about six or seven computers for information handling. You all know that things have turned out very differently; the important thing st maintain flexibility of attitude and skill so and markets which open up.
Information Technology is one of the areas oconomict prosperity."

- Shortly after the
announced that up to 20 centres will be set up in he UK, by the Manpower Services Commission and the Department of industry, to give unemience in microolectronics and computing skills.
The centres will develop technical products and The centres will develop technical products and training to the needs of local industry. Companies in "high technology" will be helping
hem. Likely locations for these "Information Technology Centres" at present are: Liverpool, Glasgow, Bristol, Manchester, Birmingham, Rhondda, Brixton, Southwark and Sunderland. Most of the centres should be operating by
middle of next year, according to the DoI.
oration, are only 39 mm thick and of extremely ightweight construction. Unit, Model S-1050,
The Message Display provides a screen area of $186 \times 50 \mathrm{~mm}$, con-
taining 65,536 pixels (picture elements). It is constructed using 512 lines of vertical transparent electrodes on a glass substrate, upon
which a which a layer of luminescent material is
sandwiched between two insulating layers. On op of these layers is a stratum of 128 lines of horizontal electrodes. When an appropriate
drive voltage is aplied to one vertical and one drive voltage is applied to one vertical and one point' emits a bright orange-yellow spot of light measuring approximately 1000 mm square. The
Graphics Display Unit, Model S-1021 A Graphics Display the same principles, but has operates on exactly the same principles, but has
320 lines of vertical electrodes with 240 lines of horizontal electrodes - providing a total of
76,800 pixels. 76,800 pixels.
Both types Both types of display incorporate logic and
driver circuis which may be controlled from externally appplied signals, and both types may be used to display moving or stationary graphic
patterns, symbols or characters as required. Four input signal lines are required, i.e. data signals, data transfer clock, horizontal synchro
signal and vertical synchro signal. ignal and vertical synchro signal.
The desired display position of specified by selecting the appropriate vertical
and horizontal electrodes in and horizontal lecectrodes in an X-Y matrix.
Because each pixel is generated at a fixed point, Because ach pixel is generated at a fixed point,
the image is sharp, stable and without either distortion or glare. The orange-yellow colouring
and uniform distribution of luminous intensity

UOSAT prepares

AMSAT-UK report that the launch date for Britain's first amateur-radio satellite, at a cost approaching $£ 100,000$, is unlikely to be before September 4 and probably not before September 15. The satellite is not expected to become fully operational until some four weeks after launch, although
telemetry signals should be received on 145 and 435 MHz . It is being stressed that this is a highly complex unit that will require considerable post-launch activity to assess the performance of the on-board experiments and service modules. The
Science Research Council has approved a grant of $£ 18,000$ to cover work at the University of Surrey in the three months f lowing the launch. There is still some uncertainty about the correct exposure television camera experiment.
The long-lived Oscar 7 satellite (launched November 1974) began to malfunction on June 12 with the transponders remaining mute, apparently due to battery
problems in the deep shadow period. It is oped that, by resting the transponders for a period, a further season of operational usage may prove possible, though clearly the satellite's operational future is in doubt. AMSAT-UK has recently contriGerman work on a Phase 3 satellite.

Radio interference

report
The latest "Radio Interference Report" from the Home Office's Directorate of harp (10.74%) decrease in the tota number of complaints (investigations com pleted) but rather more complainants. The eason for this paradox, the Home Office of interference due to illicit c b, transmis ons has necessitated concentration of investigating effort on this form of in terference, to the detriment of normal in b. interference some 271 complaints c.b. interference were received between 964 were to television; 646 to radio/hi-fi and 131 to private mobile radio services. Rather speculatively, it is claimed that uch complaints in 1981 may equal the ined. The report concludes that the very rapid rise in these complaints "is the mos gnificant factor in the interference field in recent years ... this cause of interference may soon becom
Only 127 cases of interference from 7 sources are attributed directly to amateur radio transmitters, although 3470 investi-
gations attribute interference to inade
quate receiver immunity, and presumably activity After are related to amateur throughout the 1970s the number of complaints of interference to sound radio from all sources (23,782 in 1979) shows a sharp downturn to 2,385 (13,980 l.f./m.f.f., 6365 the increase in recent years of harmful interference to aircraft communication channels, many in the form of broadcast music and speech. The Civil Aviation Authority and the Home Office are cooperating in an investigation aimed at
determining the unidentified sources of interference. In general, contact devices (such as thermostats and switches) in both domestic and industrial equipment remain the largest source of interference, the
11,100 complaints representing 27% of all complaints. There was a total of 41,086 complaints from 35,790 complainants.

More n.b.f.m. on
 28 MHz ?

In the December 1979 WoAR attention was drawn to the increasing use worldwide of narrow-band f.m. in the 28 MHz
band, particularly in " 10 kHz channels" between 29.3 to 29.5 MHz , by both fixed and mobile stations and including, in the USA, a number of 28 MHz repeaters with 100 kHz spacing between input and output channels. A $29.67 / 29.57$ repeater is also In operational in West Germany including J. D. Harris, G3LWM of Bishops' Stortford, has launched a campaign to persuade more British amateurs to se this band, particularly during the coming years of low sunspot activity when its
use for long-distance operation will be limited. The danger of there being an pparently "deserted" band immediately djacent to what may rapidly become the only one of the reasons for the group wishing to see more local activity on the band. It is felt, for example, that there is considrable scope for improvement in receiver ensitivity and the de Thicient mobile aerials
They point out that local and mobile background when 144 MHz became available to Class B licence holders. They urge he formation of local 28 MHz activity roups to encourage band-activity and to or intruders.
The high-percentage of Class B amateurs $(144 \mathrm{MHz}$ and above, although they may soon be authorized to use 70 MHz) may make it difficult to achieve substantial
use of 28 MHz for mobile and local working. But clearly this is an urgent requirement if the integrity of the band is to be preserved.

From all quarters

A 3540 km s.s.b. contact on 144 MHz be tween Mike Lee, G3VYF in Basildon and 4X4IX in Tel Aviv on June 11 is believed to have been brought about by a combina-
tion of Sporadic E and tropospheric ducting. Signal reports were $59+$ both ways and the contact represented the culmination of some two years of preparation and study of the path. During a Sporadic E
opening on June 7 many British amateurs opening on June 7 many British amateurs
worked stations in the USSR including White Russia (UC2) and the Ukraine (UB5) at distances approaching the 2500 km limit for unassisted single-hop Sporadic E propagation.
What appears to have been the first
432 MHz r.t.t.y. teleprinter contact with 432 MHz r.t.t.t. . teleprinter contact with Fraser, G8PWX in Tynemouth. His contact with LA3EQ was over a distance of 660 km . The first transatlantic contact by moonbounce on the 2.3 GHz band has been
made by the Dutch amateur PAOSSB (20 ft dish aerial) and the Californian W6YFK (18ft dish).
BARTG reports that the use of the sophisticated AMTOR mode of r.t.t.t.y.,
developed by Peter Martinez G3PL. developed by Peter Martinez, G3PLX, is including Oman and Pakistan. Longdistance contacts using AMTOR have been made from the UK with mobilemarine station G3RSP/MM in New Zeation proved possible over the short path with its propagation delay of about 135 milliseconds, but on the long path (about 162 milliseconds delay) only Mode B

In brief

The German society DARC recently organized a "fox hunt" for blind amateurs equipped with simple portable d/f recenvers developed by Dj 10 V . Five synch onized transmitters hidden along a 2 km Ellinger, DJONJ in 36 minutes. The 11 participants were accompanied either by guides or guide dogs ... Dr Trevor Wad-
ley, inventor of the Wadley ley, inventor of the Wadley Loop tripleions receivers and also of the Tellurome er system for accurately measurin distances by radio, died recently in Natal, South Africa at the age of 61. ... The ing held at Glenrothes on September 12 . ing held at Glenrothes on September 12.
. Mobile rallies include Torbay (ITT Social Centre, Brixham Road, Paignton n August 30 ; Vange rally at Nicholas School, Basildon on September 6; Telford New Town Centre on September 13; and Sports Stadium on September 20.
PAT HAWKER, G3VA

Phase locked detector
 for double-sideband, diminished-carrier reception

Avoiding transient delays by locking to the transmitted carrier
by D. A. Tong, B.Sc., Ph.D. Datong Electronics

Previous methods of regenerating the carrier in a double-sideband, diminished-carrier receiver have
suffered from delays, causing syllables at the start of transmission. In this design, a narrow-band, phaselocked loop is used to track the lowspeech.
In the past few years it has been recognized that amplitude-modulation transmission in which the carrier is either suppressed or diminished in amplitude have potentially significant advantages for equipment such
as pocket v.h.f. transceivers, where one of as pocket v.h.f. transceivers, where one o
the biggest limitations to range is the limited capacity of the battery powe supply. Raven has pointed out ${ }^{1}$ that double-sideband, suppressed-carrier (d.s.b.b.s.c.) transmissions can be generated
very efficiently in terms of the utilization of primary power with the scheme shown in Fig. 1. More recently, Petrovic ${ }^{2}$ has described a transmitter using these prin ciples to generate double-sideband, dim
nished-carrier (d.s.b.d.c.) transmissions Provided that the carrier is reasonably suppressed relative to the average sideband -. Mänuscript received in 1974

level $(-13 \mathrm{~dB}$ is used in the system des cribed in reference 1) both d.s.b.s.c. and teristic that a negligibly small amount of power is consumed when the user is no actually uttering a syllable. Moreover no efficiency penalty is incurred by modulat ing at a level lower than the peak leve
allowed by the transmitter. This is in shar contrast to conventional amplitude mod ulation (a.m.) where the carrier is constantly emitted at a high level. Since, for short phrases spoken without pauses, am plitude levels greater than 12% of the peak
amplitude are exceeded for only 50% of the time, and since, in addition, there are many pauses in normal speech, larg power savings are possible in a d.s.b.d.c transmitter. Indeed Raven states ${ }^{1}$ that per
sonal radios with performance comparable to a 20 W conventional a.m. transmitter become practicable.

Fig. 1. High efficiency, double-sideband suppressed-carrier scheme proposed by the transmitted waveform are processed separately, allowing relatively inefficient linear r.f. power amplifiers to be eliminated. Ring-modulator is used as
voltage-controlled 180° phase filter.

The price which has to be paid for the above advantage is the increased complexity of the receiver. For good intelligibility
in the audio output of a d.s.b.s.c. receiver, is necessary to reinsert the carrier not only with the correct frequency, as in s.s.b., but also with the correct phase rela-: ive to the sideband components. Because of its symmetry, even a d.s.b.s.c.c. signal specify the frequency and phasie of the missing carrier, but the techniques used to eplace it (principally either the "recipocating detector" ${ }^{3}$, the " 2 F method" ${ }^{4,5}$), or the phase-lock-loop method, , all suffer time to do the job of regenerating the carrier. This means that syllables of speech have their leading edges chopped off to an extent depending partly on the exacit technique used, partly on the incoming signal-
to-noise ratio, and partly on the initial degree of mistuning of the receiver. In the eciprocating detector, this delay in negenerating the carrier is apparently cluite:
hort, but long enough to give the detector hort, but long enough to give the detector interference. With d.s.b.d.c., the low-level carrier can be used to define the regenerated car-
rier: any transient delays occur only orice rier: any transient delays occur only once per transmission and are not a problem. In
addition, two other worthwhile advantages are that (a) the carrier, although of reduced mplitude, can be used to reliably operate the squelch and also to control the gain of he receiver, and simpler
emodulator which was built in 1974 by the author principally for experiments sing d.s.b.d.c. but which also has advan* ages compared with the more conven tional techniques for demodulating ordiventual inclusion in a pocket transceive ong the lines of the one already described by the author in Wireless World ${ }^{8,}$ but using a.b therefore imposed on the design:

- the power consumption must be minimal
- it should produce an indication (i.e.' à change in a logic level) that a genuine sigof interference and within as short a time as possible of applying the power supply to the circuit. This is so that an effective battery saving technique can be applied by
low duty cycle 8,9 .
incoming signals with a signal-to-noise ratio just inadiequate for intelligibility,
should be able t.o provide a reliable "signal present" indication. This anse "signal usable signals are never too weat that usable signals are never too weak to
operate the squelch - stability of the squelch detector should be adequate to make a user-operated control unneciessary.

Circuit operation

The block diagram of a circuit to meet the above criteria is shown in Fig. 2. It is width narro'w enough to allow it to lock onto signals. which are buried in the receiver's noise. The loop comprises a balanced mixer: M_{2}, operational amplifier A_{4}, and the voltage-controlled carrier-insertion
oscillator. Fy choosing appropriate parameters for the loop filter (A_{4} and associated components) an almost arbitrarily narrow bandwidth can be obtained, but at the expense of an increased lock-up time ${ }^{10}$. The phase-lock loop behaves, in effect as a frequency of an incoming signal.

When the loop is locked it forces the two i.f. inputs to M_{2} into a 90° phase dif-'
ference, and the d.c. output component of M_{2} is zero. A shift in relative phase of the two signals would tend to give a d.c. output component from M_{2} whose sign and amplitude would depend on the sense and magnitude of the shift. Because the mixer is enclosed in a negative-feedback loop,
however, any tendency to a phase shift is automatically cancelled by a shift in the instantaneous frequency of the carrier-insertion oscillator.
The local oscillation fed to M_{1} is phaseM_{2}. When the system is locked, therefore, M_{1} gives an output which is proportional o the amplitude of the incoming signal and which contains the demodulated audio
signal, if any. The d.c. component is fed to A_{2} and A_{3} for the use as an a.g.c., source and to provide the "signal present" indicaIt is worth pointing out at this stage that a coherent detection system such as this nary a.m., over an envelope detector.
The signal-to-noise ratio at the audio utput is the same as that at the r.f. input. In contrast, an envelope detector has a o-noise ratio is worse than that at the input ${ }^{7}$.
An envelope detector gives a rectified utput for noise-modulated r.f. voltages a (that is nois. Thus, broad-band nois than that of the desired signal) at the input adds in the output of an envelope detector to the noise which is present within the information bandwidth. In contrast, in a coherent detector broadband noise is hetecies (i.e., higher than the highest compo nent of the wanted signal) and can easily be filtered out with a low-pass audio filter. This advantage has long been utilised in s.s.b. receivers using so-called "product

Fig. 2. Block diagram of detector for doubie-sideband, diminished- (or
undiminished-) carrier transmission System uses a phase-locked loop to
generate a strong local "carron generate a strong local "carrier", identical
in phase and amplitude to original weak in phase and amplitude to original weak.
transmitted carrier.

- Adiacent-channel interference is not de modulated properly but gives an output which is frequency-shifted like off-tune
s.s.b. It is therefore more easily differensiated by the listener from the wanted sig-
nal.
"By addińg
"signal-presen
"By addińg a low-pass filter prior to the "signal-present" comparator, an arbitrar-
ily small (say 10 Hz) r.f. bandwidth an ily small (say 10 Hz) r.f. bandwidth can be
achieved. Thus even very low carrier levels can be reliably filtered from the noise, and excellent squelch action obrained. Further, a squelch indication will only occur if the receiver is phase-locked. Any non-coherent input signal will not actuate
the compatator and false squelch openings are rare.
- The output voltage from A_{4} is related to demodulated and appear at the output of

Practical circuit

The block diagram could be implemented using commercially available phase-lockloop integrated circuits were it not for the extra constraints mentioned earlier. The circuit finally developed is shown in Fig. 3 and is based mainly on c.m.o.s. logic de-
vices because of their extremely low power consumption. A differential configuration was chosen to eliminate any constant voltage levels (in the absence of a signal) across the capacitor. This allows the circuit to respond as soon al the power is applied
and without any delays caused by the time required to charge the capacitors. A differential system also removes most of the sources of d.c. drift and makes the squelch and a.g.c. thresholds independent of temerature and supply voltage of c.m.o.s. analogue switches controlled by square-wave switching waveforms at the frequency of the incoming carrier and in such a way that when, for example, versa. When open, the path through a gate behaves like a bidirectional resistor of about 300 ohms, whereas when closed its resistance is of the order of 10^{9} ohms. When fed with good square waves, such a as a phase-sensitive detector and has the advantages that it can, if necessary, be bidirectional and that its quiescent output voltage is the same as its input voltage. Thus, no temperature-dependent offse ferential symmetry.
Switching waveforms for the four gates (two in each mixer) are derived from IC 5_{5}, which is a dual J-K flip-flop connected as digital phase-shifter ${ }^{11}$. It requires an inpu the output waveforms, and this is provided by a multivibrator based on IC_{6} as described by Linsley Hood ${ }^{12}$. An alternative oscillator based on shown in Fig 4.
Because of the high gain of the 741
operational amplifier, the squelch output switches from its low limit of about +2 V to its upper limit of $+\left(\mathrm{V}_{\mathrm{cc}}-1\right)$ volts for an extremely small output signal from M_{1}
$\left(\right.$ IC $_{(\text {(a) }}$ and
IC $\left.7_{(s)}\right)$. With no input signal or in the absence of phase lock, ${ }^{\text {IC }}$ puts to IC_{2} receive virtually identical voltages and the offset null potentiometer R_{30} can be used to ensure that the squelch
output signal is "low" output signal is "low"
The phase-lock loop uses IC_{4} as the loop amplifier-filter but an addition to the basic
system shown in Fig 3 is that when ino signal is being detected the loop bandwidth is increased by opening gates $I C_{B(a)}$ (b) thereby shorting the two resistors R_{18}
and R_{18} and R_{19}. This reduces the time required
for the loop to lock by a large factor. When lock is achieved the squelch output goes high and the two gates are closed, thereby

Fig. 3. Circuit of d.s.b.d.c.. detector,
operating at input frequencies of 455 kH operating at input trequencies of 455 kHz ,
suitable for adding to final i.f. amplifier of existing receiver. A.g.c. output is suitable
for controlling Plessey amplifier i.cs. R.f. input level required is amplifier i.cs. R.f. input level required is
about 200 mV peak-to-peak and supply voltage can vary from 6 to 15 volts
(maximum) For best oscillator stab (maximum. For best oscillator stability (as
needed for d.s.b. .c. but not am or f.m.) supply to \bar{C}_{6} should be stabilized.
reducing the bandwidth of the loop to its normal working value, ${ }^{10}$
An a.g.c. voltage suitable for feeding Plessey SL600 i.f. amplifiers ${ }^{13}$ is obtained by monitoring the amplified output of mixer M_{1}. IC_{3} behaves as an amplifier for voltages from IC_{1} which are more negative
than that at the slider of R_{29}. The latter therefore sets the a.g.c. threshold in the phase-lock mode. Naturally, signals which do not cause phase-lock generate no cohe-
rent a.g.c. voltage and to avoid possible
receiver overload on, for example, random
noise inputs, some incoherent a.g.c., derived from a diode rectifier fed from the last i.f. amplifier, may also be required.
When the a.g.c. oop is operating, the When the a.g.c. loop is operating, the d.s.b.d.c. input depends on the degree of carrier suppression, since IC_{3} acts to maintain a constant rectified carrier level at the output of IC_{1}. Conventional a.m. would therefore emerge from this dẹtector at a
very low level unless R_{24} were readjusted to match the increased carrier level. For minimum lock-up time on a signal which is close to the working threshold, it is essential that the carrier-insertion oscillator is close to the correct frequency (say
within 100 Hz). It is the function of D_{1} and D_{2} to limit the voltage swing at the output ${ }^{\text {of }} \mathrm{IC}_{4}$ to a fairly narrow range; peaks of noise cannot then swing the v.c.o. fre-

Fig. 4. Simple alternative oscillator circuit or use as v.c.:. in Fig 3. The potentiometer
s a skeleten preset and should be adjusted oscillation mplit not excessive
oscillation amplitude.

Simple 100W inverter

Automatic mains back-up from 12 V d.c. with battery charge mode

This inverter was designed to provide back-up power for a desk-top power cuts. While the normal mains voltage is available, the inverter circuit 'ticks over' and the 12 V standby battery is charged. If the mains supply fails, the square-wave inverter starts up automatically until the mains is restored. A simple overload protection circuit is

Since the inverter provides a maximum power of about 100 watts, it is suitable for driving most small domestic loads such as television sets, hi-fi apparatus and central
heating pumps. Although the inverter will power a tv load taken over from the normal mains supply, it may not be capable of providing the current peak required when
the set is switched on.

Circuit operation
The complete circuit is shown in Fig. 1. car battery and the mains supply are
connected to the inputs of the inverter and the load to its output. Under these circum stances the mains input and output are
connected together and the transformer keeps the battery charged through $\mathrm{D}_{3}, \mathrm{D}_{4}$ and the current limiting resistor, R_{14}. When the mains supply fails, relay RLA disconnects the live input from the high-
voltage winding of the mains isolating voltage winding of the mains isolating
transformer and connects its low-voltage windings to the collectors of the Darlington pair output stages, Tr_{6} to Tr_{9}. These two pairs are driven in antiphase by 50 Hz square waves produced in the drive circuit
which operates from a 5 volt supply provided by a voltage regulator, IC_{4}
Considering the circuit in more detail, IC_{1} is a 555 timer connected as an astable multivibrator running at 200 Hz . Variable
resistor R_{15} is used to set resistor R_{15} is used to set the frequency. A
dual J K bistable, IC_{2}, divides the frequency of the square-wave from the timer by four to give 50 Hz . Hence we now have wo 50 Hz square waves in antiphase at the Q and $\overline{\mathrm{Q}}$ outputs of the second half of IC_{2}. These two signals, after being buffered by nected to the output stages, Tr_{6} to Tr_{5}.

Current is therefore switched alternately through the two halves of the low-voltage winding of the transforme
Overload protection The usual way of detecting an overload The usual way of detecting an overload
electronically is to place a low-value resistor in a high-current line and use the voltage drop across it to switch a transistor. In this design, the 0.7 V required to switch an overload detection transistor
would have resulted in a power loss in the detection resistor of some seven or eight watts, which would have significantly reduced the efficiency of the inverter

Fig. 1. Complete diagram of the inverter and battery charger circuits. Two antiphase 5 OHz square waves from $/ \mathrm{IC}_{1} / / \mathrm{IC}_{2}$ are
buffered and used to buffered and used to drive two Darlington
pairs connected to the output transforme The relay coil is shown in its non-active state so the inverter is in operation. On state so the inverter is in operation. On
mains input, the relay contacts switch and
the battery charges.

WIRELESS WORLD SEPTEMBER 1981 The approach adopted, therefore, was to monitor the saturated base-emitter voltage
of the output transistors, which rises proportionally with the collector current. Signals at the emitters of Tr_{1} and Tr_{2} are
summed and smoothed and an adjustable proportion of the resulting voltage taken to the base of Tr_{5}. With normal loads, this voltage is low enough to ensure that the collector potential of Tr_{5}, and therefore the input potential of the D-type bistable
IC_{3}, are close to the positive supply IC_{3}, are close to the positive supply
voltage. The Q and Q outputs are therefore high and low respectively.
As the current through the output stages increases there comes a point when Tr_{5} starts to conduct, forcing the voitage at its
collector towards zero. This point is set by R_{16}. On the next positive voltage transition at the emitter of Tr_{1} the outputs of IC_{3} change state, turning Tr_{3} and Tr_{4} on and inhibiting both the drive signals at the bases of the output transistors and the
clock input of IC_{3}. Under these conditions the 1. e.d. is lit. The inverter will remain disabled until the reset button is pressed. To avoid the overload circuit being activ ated when the inverter is switched on, R_{12}

Construction

The transformer used in the prototype was a standard 240 V primary $/ 12-0-12 \mathrm{~V}$
secondary type rated at 100 VA , but a 200VA transformer was used in later a sions because of its lower losses.
Transistors Tr_{6} to Tr_{9} must be mounted on a heat sink with a thermal resistance of between $1^{\circ} \mathrm{C} / \mathrm{W}$ and $2^{\circ} \mathrm{C} / \mathrm{W}$. Diodes D_{1} silicon types, but D_{3} and D_{4} must be capable of carrying at least 4 A without overheating. The latter two diodes are The chrcuit diagram shows RLA in the non-energized state, i.e., with the mains sets of changeover contacts; RLA A_{1} and RLA_{2} should be rated at at least 10 A . Resistor R_{14} has to dissipate several watts when a flat battery is being charged ($W=I^{2} R$), so it should not be mounted in contact with the circuit board. All other ytic capacitors at 10 V d.c. It is important that a suitable grade of wire be used for the high-current carrying connections and that all conductors carrying mains voltage are well insulated.
connect the battery, but no completed supply, and check the current consumption of the circuit. Depending on the state of the battery, the current should be befactory, adjust R_{1} so that its slider is at the 'earthy' end of the track and connect a load such as a 100 W light bulb to the output. Adjust R_{16} until the overload protection circuit Rust fails to operate. Now make sure output is shorted, exercising extreme caution as the output voltage is potentially lethal. Next, remove the short, connect the mains supply and check that the relay

stroboscope disc must, of course, be dri-

Fig. 2. Graph showing efficiency and
output voltage variations due to loading For most domestic loads the voltage regulation is sufficient so output/driver
feedaack was left out of the eircit feedback wimple of the circuit to keep the design simple.
being charged at not more than 4 A . Finally, with the mains supply discon-
nected, adjust R_{15} to set the 50 Hz frequency. In the absence of a frequency meter the easiest way to set the frequency is to use the inverter to drive a record checking system. If the turntable speed remains the same when the mains is sitched in and out then the frequency is correct. The lamp used to illuminate the
ven constantly by the mains.
The graph shown in Fig. 2 summarize the performance of the inverter. The effi ciency is low at low output powers becaus of transformer losses. As the output power rises, however, the efficiency increases rat
pidly to about 80% at the rated output: Voltage regulation is rather poor but th fall in r.m.s. output voltage from 237 V to 210 V at full load should be acceptable fo all but the most demanding applications. Regulation could be improved at the ex
pense of simplicity by including some form of feedback from the output to the driv stages. When measuring the output voltage, remember that for a square wave,
r.m.s. and peak levels are the same.

Phase locked detector

Continued from page 81
quency a disproportionate distance from the correct value system to lose lock
With the circuit values shown in Fig. 3, the loop will lock onto an unmodulated carrier whose peak-to-peak amplitude is only one tenth of that of the associated about 500 mV peak-to-peak. A positive indication is obtained from the squelch output that such a weak signal is present within 50 ms of power being applied to the circuit. For larger input signals the lockalways be the case when ordinary a.m. is being received. Moreover, for a.m. and f.m. reception, a much wider loop bandwidth can be used and there is then no need for gates $\mathrm{IC}_{8(\mathrm{a})}$, (b). R_{18} and R_{19}
can then be reduced to
say,
$1 \mathrm{k} \Omega$ Similarly, D_{1} and D_{2} can be removed and a much wider acquisition range obtained. If f.m. is received, the output is taken from pin 6 of IC_{4}. In all cases the squelch output perature and supply voltage from $6-15 \mathrm{~V}$.

References

1. P. F. Raven, "The use of DSBSC modulation for portable VHF radio telephones", IEE Con2. V. Petrovic, "A high efficiency DSB
transmitter". Paper presented at the "Commu nications 72 " conference, Brighton, June depze. with a signal-synthesised referencee,," IEEE Transactions on Communications Technology
COM-19, No. 5 , October 1971. 4. F. G. Apthrope, "Homodyne reception" Electronic Engineering, 19, July 1947, 238. 5. R. C. . Ma civer adapted for the reception of suppressed ceiver adapted for the reception of suppressed
carrier double sideband transmissions", Radio and Electronic Engineer, 43, No. 7, July 1973, 407.
2. J. P. Costas, "Synchronous communica-
tions", Proc. IRE, 44, December 1956, 1713 . tions", Proc. 1 RE, "A4, December 1956, 1713.
3. L. . Chu, "A phase-locked AM radio re
ceiver" ceiver", IEEE Transactions on Broadcast and
Television Receivers, BTR-15, No. 3, October 1969, 300. 8. D. A., Tong, "A pocket-sized VHF
transceiver", Wireless World, July 1973 , p. 245 , Aug. p.293.
4. D. A. Tong, "Battery saving circuit for portable communication receivers", Wireles World, March 1972, 124.
5. F. M. Gardner, "Phaselock Techniques", Sydney, 1966 .
6. See for example A J T 11. See for example A. J. Turner, "SSB genera
tion", Wireless World, September 1973, 453 . tion
7. J
Leles Linsley , Hood, "Linear voltage controlled. oscillator", Wireless World, No contrinied oscilat.
vember 1973,567 .
${ }^{13}$ Plessey Com series application manual", Th Plessey Company Ltd., Plessey Semiconduc
tors, Cheney Manor, windon, Wilts.

WIRELESS WORLD SEPTEMBER 1981

By Ariel

Why not some jam

today?

The Bill to give birth to the Act that will cut the umbilical cord joining British Telecom to the rest of the Post Office is. labouring its way through the normal Parlamentary processes.
But, even though, as far as I can make dentity, this lively youngster has already made its presence felt in more ways than one. Before we'd even had time to get used to the name or make sense of the new logo - part of which appears to be written in
Hebrew -BT , under the approving eye of its proud parent, Peter Benton, got itself involved in what history may call The Great Yellow Paint Controversy. And if you know of a better way of arriving with a
bang 1 'd like to hear about it bang ${ }^{\text {Td d like to hear about it }}$
BT's chairman S Sir Geo whom we can dub its putative grandfather, has played no mean role in putting his organization on the map of the public mind. In a number of weighty statements, supported by snowstorms of releases from
the Press Offices, he has chronicled BT's past achievements, told us about what is under way now and liffed the lid off some of the goodies we can expect in the future. And he has reminded us, as a rider, that if opay for it. Now, there's a surprise. In fairness, however, even the most cynically critical will admit that BT is in many respects showing a vitaity not usually asexpansion is certainly impressive, and the list of current and future innovations designed to help users get the best out of heir telecommunications services - albeit at a price - shows a remarkable awareness of specialized customer needs. Much, for
instance, is being done for the handicapped. The hard of hearing, the infirm, amputees, even those with sight defects can now enioy the benefitit of the telephone with comparative ease. The rest of us are
promised better this, simpler that and more efficient the other. And, doubtless, these things will come to pass.
But, before BT gets too complacent about tomorrow's benefits, it should look for a moment at its shortcomings of today.
It is, for instance, quite unaceeptable that BT should be congratulating itself while waiting lists for the 'phone remain. It'ss ludicrous that we should be reminded we can dial direct to the Sultanate of Oman when establishing contact between Lon-
don and Birmingham can sometimes be as fraught with difficulty as talking to the Moon. It is unsatisfactory that there should be such a high incidence of crossed ines, causing impatience and undermining telephone confidentiality. Above all, it is
insulting to our intelligence that we should be exhorted, via the home screen, to make more use of the 'phone by an ill-conceived, utterly repellent bird All credit to Sir G his merry band of peorge, Mr Benton and our courage to set their eyes on the stars. But please, gentlemen, don't forget there's still be done first - like shooting that foul fowl for a start.

A better break

for Prestel

Meanwhile, back at the Post Office, the failure, in spite of intensive promotion, of Prestel to take off at the rate hoped for解 ing. well. I would have thought that a facilit or selecting, at the touch of a button, a ive-star restaurant, not more than a mile rhestra fo which feaaures a full symphony and serves truffles out of season, would have been snapped up like a pelican gulping down a sprat. One cannot help hinking that there is something wrong with a world whose inhabitants are reluc the pleasure of spending an evening playing battleships, being psychoanalysed or taking part in a spelling bee. But there I go, mocking again
Perhaps the trouble lies in the average Pres the thange. They laughed at Remington when he sat down at the typewriter. They tittered at Hargreaves when he gave his Jenny her first spin. Caxton's printing press was a case for a chuckle. But it wasn't amusement that
caused these reactions: rather, it was a kind of defence mechanism, an instinctive manning of the ramparts against the imminent threat of something new that would dramatically alter the established way of became convinced of the enormous advantages these innovations offered, they were welcomed with open arms.
The need for information has until now been met in two traditional ways: by concerned, or by consulting standard reference works or other authoritative pub lished data. What's the difference, then between that technique and Prestel? Not and it 'answers' by displaying the informa tion you're after. Of course, even with its library of hundreds of thousands of pages, Prestel's range of information is still rela ively limited, compared with that found
is only a matter of time.
This notable British achievement dethan it is currently getting - especially from the business world which it is uniquely capable of serving.

New thinking

on the news

Still on the subject of information technology, I see that there's good news from the teletext front. One major set manufacturer reports that, followingl the 1981 Spring trade shows, their sales of teletext receivers are up by 250 per cent on last pany's pleasure - which didn't seem to me to be all that startling a revelation - at this trend and added that the multiples have come to realise just how wide the cope of the telext market is when I was at school the law of econoproduct should, all things being equal, be followed, as night follows day, by a cut in its price. Nowadays the day, by a cut in price and then point out how much bigger the increase would have been if there had been no jump in sales. Nonetheless, if other setmakers have a similarly joyful tale to tell, the great British public will be looking for some movement in the price sector.

绪 is another angle to this. If teletext is now well and truly on the way to wider public acceptance, the broadcasters have a wonderful opportunity, if not a duty, to This particularly applies to the updating of general news.
Recently, being of an investigative, scientific turn of mind, I conducted a modest experiment. In our home, being the
only male, I tend to rise early in order to only male, I tend to rise early in order to
achieve at least a brief occupancy of the bathroom before it is taken over by the emale squatters with whom it is my lot to reside. This means that I can also listen to he 7 o'clock news in comfortable silence. Every day for a week. I carefully made a
note of the bulletin headlines. Then, five hours later at midday, I switched on the office teletext set to see what more had happened in the great big world outside in the interim. On practically every one of as far as the transmitting end was concerned.
This is hardly a good advertisement for a ervice whose prime advantage is professed o be the instant transmission of news as it
is made. And as the number of teletext viewers grows, there is going to be an insistent demand for a far better service han that. Now seems to be a good time for the broadcasters to start providing it.

Quite simply the hest way to make music ...

wuild the TRAMSEENVENT range from POWERTRAN

- WORLD LEADERS IN ELECTRONIC KITS
- MONEY-BACK GUARANTEE (lifou are not completely satisfied with your Powerran kit, return it
- SOLDERING PRACTICE KIT - FREE on request with your first kit, to assist newcomers!

Happy Memories

Part type
4116200 ns
4116250 ns
214
2114 200ns Low power
2114 4500ns Low powe
4118 250ns
6116 150ns CMOS
6708450 ns CMOS
271645 ns 5 volt
271645 n 716 450ns three rail 2732 450ns Intel type
2532 450ns Texas type $\begin{array}{rrr} & & \\ \mathbf{1} \text { off } & 50-99 & 100 \text { up } \\ 1.00 & .90 & .80 \\ 1.90 & .80 & .70 \\ 1.30 & 1.20 & 1.10 \\ 1.25 & 1.15 & 1.05 \\ 3.95 & 3.25 & 1.95 \\ 8.75 & 8.25 & 2.95 \\ 2.40 & 8.25 & 7.95 \\ 2.65 & 2.40 & 2.15 \\ 7.40 & 7.00 & 2.75 \\ 5.40 & 4.95 & 6.75 \\ 5.40 & 4.95 & 4.65\end{array}$

Low profile IC sockets: Pins $\begin{aligned} & 81416182022242840 \\ & \text { Pence } 91011141518192533\end{aligned}$
Soft sectored mini discs in plastic library case of ten discs:
1 case: $£ 17.00 \quad 10$ cases: $£ 15.50 \quad 15$ cases: $£ 14.50$ case: $£ 17.00$
Please add 30 post and packing to orders under $£ 15$
and VAT at 15%

Access and Barclaycard accepted
24-hr. service on (054422 4 618
Government \& Educational orders welcome, $\mathbf{£ 1 5}$ minimum
Trade accounts operated, phone or write for details
Full list of components and books available on request
HAPPY MEMORIES (WW) GLADESTRY, KINGTON HEREFOFDSHIRE HR5 3NY Tel: (054-422) 618 or 628

H.E. LTD.

Which amplifier?
1.L.P. Amplifiers now come in three basic types, each of which is available with
or without heatsink. Having decided the system you models $\mathrm{HY} 30,60$ or 120 for example), super quality hi-fi with extrav versatility
(MOS 120, MOS200) or Disco/PA/Guitar (HD 120, HD200 or HD400) rouwill
 amplifiers for bolting to a metal chassis will suit. With cheice such as this and a
brilliant new range of IL.P. functional modules to choose from you now have briliant new rangi of I.L.P. functional modules to choose from you now have
the chance to build the finest audio system ever offered to the constructor.

BIPOLAR Standard, with heatsinks									Without heatsinks				
$\begin{gathered} \text { моoе } \\ \text { NOMEF } \end{gathered}$			$\begin{aligned} & \text { IORTION } \\ & \text { I.M.D.D. } \\ & \text { BOH2/7Hz } \\ & 4: 1 \end{aligned}$	$\left\|\begin{array}{c} \text { supiy } \\ \substack{\text { surfate } \\ \text { THPMAX }} \end{array}\right\|$	$\begin{gathered} \text { sizz } \\ \text { mim } \end{gathered}$	$\begin{gathered} \text { wr } \\ \text { gms } \end{gathered}$	palc	vat	$\begin{aligned} & \text { MODEL } \\ & \text { NUMBER } \end{aligned}$		$\substack{\text { wr } \\ \text { gms }}^{\text {chen }}$	PRICE	vat
HY30	15w 4.88	0.015%	<0.006\%	$\pm 18 \pm 20$	$76 \times 88 \times 40$	240	67.29	81.09					
HY60	30w4.88	0.015%	<0.006\%	$\pm 25+30$	$76 \times 68 \times 40$	240	¢8.33	11.25					
HY120	60w488	0.01\%	<0.006\%	± 3544	120x78x40	410	E17.48	${ }^{2} 2.62$	HY120P	120026x40	215	115.50	${ }^{12.33}$
HY200	120w4882	0.01\%	<0.006\%	± 45550	$120 \times 78 \times 50$	515	t21.21	E3.18	HY200p	120x26x40	215	118.46	12.73
HYa00	200w4ar	0.01\%	<0.006\%	$\pm 45 \pm 50$	$\|120 \times 78 \times 100\|$	1025	[31.83	84.77	HY400P	$120 \times 26 \times 70$	375	E28.33	E4,25

AMPLIFIER
WITH
$\underset{\text { WITH }}{\substack{\text { WITH } \\ \text { HEATSINK }}}$

HEAVY DUTY with heatsinks Without heatsinks

MOSFET Ultra-Fi, with heatsinks

Without heatsinks

MODEL NO. FOR USE WITH PRICE			
	a maximum of 100 mA or one HY 67 The following will also drive the HY6/66	£4.5	${ }^{\text {f0.68 }}$
	series exceet HY67 which requires the PSU3O.		
${ }^{\text {PSL36 }}$	1 or 2 HY 30	E8.10	f1.22
PSSU50 PSU60	10	${ }^{\text {E10.94 }}$	${ }^{\text {f1 } 1.64}$
Psu60		${ }^{\text {f } 13.04}$. 96
PSU70		f13.32 f15.92 1	¢ $\begin{aligned} & \text { f2. } 2.00 \\ & \mathrm{f} 239\end{aligned}$
PSU75	1 or 2 MOS 120/MOS 120 P	${ }_{\text {¢ } 16.20}$	${ }_{\text {f } 2.43}$
PSU90	$1 \times \mathrm{HY} 200$ HY 200P/HD 200/HD 200 P	E16.20	${ }_{\text {f2 } 2.43}$
Psu95	$1 \times$ MOS 200 M MOS 200 P	${ }_{\text {E } 16.32}$	
PSU180	HY 2001HY 200p/HDD200/HD200P		
PSU185		£21.34	¢3.20
	MOS400P		

FP480 BRIDIING UNIT FOR
DIUBBIIMG POWER

Which modules?

In launching eighten different units all within amazingly compact cases to help make
complete audio systems using I.L.P. power amplifiers, we bring the most exciting, the complete audio systems using I.L.P. power amplifiers, we bring the most exciting,
nost versatile modular assembly scheme ever for constructors of all ages and

 measure $90 \times 20 \times 40 \mathrm{~mm}$. They are so reliable that all I.L.P. modules carry a 5 year no
quibble guarantee.

MODEL	MODULE	DESCRIPTION/FACILITIES	CURRENT REQUIRED	PRICE	VAT
Hy6	MONO PRE AMP	Mic/Mag. Cartridge/Tuner/Tape/ Aux + Volume/Bass/Treble	10 mA	£6.44	£0.97
HY7	MONOMIXER	To mix eight signals into one	10 mA	£5.15	£0.77
HY8	Stereo mixer	Two channels, each mixing five signals into one	mA	£6.25	£0.94
HY9	STEREO PRE AMP	Two channels mag. Cartridge/ Mic + Volume	10 mA	£6.70	£1.01
HY11	MONO MIXER	To mix five signals into one + Bass/Treble controls	10 mA	¢7.05	£1.06
*HY12	MONO PRE AMP	To mix four signals into one + Bass/Mid-range/Treble	10 mA	£6.70.	£1.01
*HY13	MONO VUMETER	Programmable gain/LED overload driver	10 mA	¢5.95	£0.89
HY66	STEREO PRE AMP	Mic/Mag. Cartridge/Tape/Tuner/Aux + Volume/Bass/Treble/Balance	20 mA	£12.19	£1.83
HY67	Stereo headphone	Will drive headphones in the range of $4 \Omega-2 K \Omega$	80 mA	£12.35	£ 1.85
HY68	STEREO MIXER	Two channels, each mixing ten signals into one	20 mA	¢7.95	£1.19
HY69	MONO PRE AMP	Two input channels of mag. Cartridge/ Mic + Mixing/Volume/Treble/Bass	20 mA	£10.45	£1.57
HY71	DÚAL STEREO PRE AMP	Four channels of mag. Cartridge/Mic + Volume	20 mA	£10.75	£1.61
*HY72	VOICE OPERATED STEREO FADER	Depth/Delay	20 mA	£13.10	£.1.97
*HY73	GUITAR PRE AMP	Two Guitar (Bass/Lead) and Mic + separate Volume/Bass/Treble + Mix	20 mA	£ 12.25	£1.84
+HY74	STEREO MIXER	Two channels, each mixing five signals into one + Treble/Bass	20 mA	£11.45	£1.72
+HY75	Stereo pre Amp	Two channels, each mixing four signals into one + Bass/Mid-range/Treble	20 mA	£ 10.75	£1.61
+HY76	stereo SWITCH MATRIX	Two channels, each switching one of four signals into one	20 mA	Tobeannounced	
+HY77	STEREO VU METER DRIVER	Programmable gain/LED overload driver	20 mA	¢9.25	£1.39

The modules are
encapsulated and ind encapsulated and dinclud
latest design high quality
clip.on edge litip-on edge comnectors.
liter
ate

For easy mounting we
recommend recommend
860 mounting board for
modules 7 Y $6-H 13$ modulus HY6 - HY13
$78 \mathrm{p}+12 \mathrm{~V}$. V.A. B66 Mounting baard for
HY66 - HY77
$99 p+13$ p. V.A.T.

AIII.L.P. modulus include
full connectiondtal
All I.L.P. modiles in
I.L.P. Products
are of British Design and Manufacture.

TO ORDER USING OUR FREEPOST FACILITY Fill in the coupon as shown, or write details on a separare
sheet of poper, auoting the name and date of this iournal
By sending By sending your order to our address as shown at the
bottom of the page opoosite, with FREPROST Clearly bottom of the page opposite with fretpost clearly
shown the envelope, ouned not stappit we pay
postage for you. Cheques and money orders must be

 ordering, u.K. customern
V.A.T. as shown PAAMENMAY BE MADE BY ACCESS OR
BARCLAYCARD F REQUIRED.

ALL WITH ILP'S 5 Year Mo oubble durantee
To: IL.P. ELLECTRONICS LTD. ROPER CLOSE CANTERBURY CT2 7EP Please supply.
T.

Piease debit my Access//Barclaycard Account No.

$W W=069$ FOR FURTHER DETAILS

PRINTED CIRCUITS

FOR WIRELESS WORLD PROJECTS

Worla

your husincosple
 Diice campntic?

Here is

 somefree advicePerhaps you are wondering if it would improve your cost-effectiveness. Or maybe you've installed a basic system and plan to enlarge it. Office Systems is designed for you.
It's a brand-new glossy magazine for directors It's a brand-new glossy magazine for directors
and managers-and we'll send it to you free and managers-and we'll send it to you free
each it will help you show you need it.
It will help you avoid expensive mistakes. It will help you solve business problems. and software for your particular needs. nd software for your particular needs.
And it will be written in clear, uncluttered English. Nojargon.

To see if Office Systems is meant for you, simply contact Office Systems, Controlled Perrymount Road Haywards Heath West Sussex RH16 3BR Taywa FIRST ISSUE:

Highperformance curve.

The Professional Choice

Amcron ⿴囗大

Since the introduction of the DC300 in 1967，AMCRON amplifiers have been used worldwide－wherever there has been a need for a rugged and industry，has made the name of AMCRON synonymous with power amplification．For power you can depend on－choose AMCRON，the professional choice．
For further details contact the UK Industrial distributor：

G．A．S．ELECTRONICS

16，ST．ALFEGE PASSAGE，LONDON SE10
TELEPHONE：01－853 5295
TELEX： 923393 LASER G

TEST INSTRUMENTS

THANDAR
DIGITAL M

thandar -	Mains Adaptors:
DIGITAL MULTIMETER	PDM35, DM450, PFM200
DIGITAL MULTIMETER	Rechargeable Battery Pack:
	DM235, DM350, DM450, SC1
FREOUENCY	
${ }_{\text {PFM } 2000}$ £49.80 TFO40	
$200 ¢ 14$	\%
37.50	
OSCILOSCOPE:SC110.... 8133.00	
FUNCTION GENERATORS	(for SCi110)
100... 779.00 TG102 11	
Carr	ench I Instrument Rack..........19.95
TM353, TF040, TG1	
TF200,'TG 105. TG $100 . \ldots .155 .95$	VAT on all prices
TM $352 . .$. E3.00 SC110..... 77.70	handar orders E1p\&p

(All prices plus 15% VAT)
 All prices correct at 1.7 .81
Cash with orderor redit Card
Catalogue available 30 .
DAROM SUPPLIES
 WW - 022 FOR FURTHER DETALLS
RECHARGEABLE BATTERIES

PRIVATE \& TRADE ENQUIRIES WELCOME Full range available to replace 1.5 volt dry cells and 9 volt
PP type batteries, SAE for lists and prices. $£ 1.45$ for booklet, "Nickel Cadmium Power,", plus catalogue.
*New sealed lead range now available Write or call at: SANDWELL PLANT LTD
2 Union Drive, Boldmere
Sutton Coldfield, West Midlands, 021-354 9764 ww - 075 FOR FURTHER DETAILS

FARNEL A15: $210 / 240 \mathrm{~V}$ IP. Dual Op. $12-17 \mathrm{~V}$ per rail at
10 mA . Remote sensing. current limit protection. 1164×130 $\times 38 \mathrm{~mm}$), with manual. $£ 12$.
FARNELL $7 / 3 S \mathrm{C}: 120 / 240 \mathrm{~V}$ IP FARNELL $7 / 3 \mathrm{SC}$: $120 / 240 \mathrm{~V}$ IP. Adjustable current limit. Re-
mote sensing. ($88 \times 96 \times 93 \mathrm{~mm}$). Two versions available:
15 V 15 V at 2 A or 30 V at 1 A . $£ 15 \mathrm{ea}$. COUTANT OA2: Op. amp, psu, $12 / 240 \mathrm{~V}$ IP. Dual Op. $12-15 \mathrm{~V}$
at 100 mA . $(138 \times 80 \times 45 \mathrm{~mm})$. $£ 12$ ea. or 2 for $£ 22$. BRANDENBURG Photomultiplier P Metered, current limit protection. $376660 \mathrm{~V}-1 \mathrm{~K} 6 \mathrm{~V}$ at 10 mA .
$37430 \mathrm{~V}-1 \mathrm{KV}$ at 5 mA .
37550 V . 1 KV . 6 at 6 ma . Photo multiplifer tubes available.
SPECIAL OFFER. 10 MFD 500 v ECC SPECIAL OFFER. 10 MFD 500 VECC 20p ea., $10,000 \mathrm{MFD} 16 \mathrm{v}$
Mullard 35p ea., $3,300 \mathrm{MFD} 40 \mathrm{~V}$ Mulard 35 p ea. $10 \mathrm{uF} / 63 \mathrm{v}$ MIMA polvester 10% 40p ea. Large quantitiea a available. ELECTROLYTIC CAPACITORS. Very large stockholding.
Mostly IT EN122m EN1235 types.
Please send for our electrolytic list, e.g.: 220/50VA, 220/25R, Mostly end for ur electrolytic tist,
Please send
$470 / 25$, $4700 / 25 \mathrm{~A}, 470 / 50 \mathrm{~A}, 220$
CAPACITORS-DISC CERAMIC
Over 2 million now in stock, mostly ITT. Many high-voltage
types eil

SEMICONDUCTORS. Brand new and boxed bexi. Texas,
Fairchild, Signetics,
lard Fairchild, signetics, National, Motorola, Ferranti, SGS, Mul-
lard ... over a million, at trices you ve never seen before...
INTEGRATED CIRCUITS

	Stock		Type	Stock	ch
2N1306	10,400	OA	BC184L	248,000	¢p
2N1307	c2,000	POA	BFR86	68,400	A
FRB876	7,400	POA	ZTX342K	149,000	7 p
FRB877	17,600	POA	ZTX542K	128,000	p
R1076	7,350	POA			

PYE HEAD CLEANING CAS-		
SETTES. Brand	new or	$\begin{array}{l}\text { discount on quantity. One } \\ \text { off prices as follows: }\end{array}$

boxed, 50pea. Coxed,
CASETTEDECCKS: With ste-
reo heads, mechanicallyreo heads, mechanically.
complete, but with no electronics. Smart black modern finish.
We have VERY LARGE OUANTITIES
$0.1 / 16 \mathrm{~V}$ disc. ceramic
avable but,
with no electronics. Smart $0.11 / 16 \mathrm{v}$ disc. ceramic but,
with no electronics. Smart
black modern finish. $£ 5.00$ Very PIHER PRESETS Very large stocks, PT10,
PT15 enclosed types. Please
send for our preset list. Most
values 1000 -5M
HEAVY DUTY

 10P 12 A G00V AC
$49 \mathrm{~mm} \square$ Fascia We have the following quantities of low profile Guan-
PLATED I.C. sockets manu-

By Micro Consultants Ltd. 50.0 cable drive op. Linearity
0.25%, max. 0.125% typ. Setting time: 2 V step 70 nS typ. 2 MV step 50 n colour televisision transmission standard. Dif gain 0.5% diff. phase shift 0.5° types rad 802 and MC2208/8. SPECIAL OFFER PRICE: \&20
TRANSFORMERS:
$5-0.5125$
SPETRA

TRANFO
5-0.5V 400 mA
$6-0.6 \mathrm{O}$
8.00 mA
$8.0-8 \mathrm{~V} 00 \mathrm{~mA}$ $6-0.6 \mathrm{~V} 100 \mathrm{~mA}$
$8-0.8 \mathrm{~m}$
9.00 mA
9 A $8-0-8 \mathrm{~V} 40 \mathrm{~mA}$
9.0 mV 3 m
$11 \mathrm{~V} 2 \mathrm{~A}, 22 \mathrm{~V} 1 \mathrm{~A}$ $12 V 130 \mathrm{~mA}$
12 V 1 A 12V1A5
$0.12,0-1296 \mathrm{VA}$
15 V 10 mA $0-12,10-1296 \mathrm{VA}$
15 V 100 mA
17 V 30 mA
$20-0.2000 \mathrm{~m}$ 17 V 300 mA
$20-0.20400 \mathrm{~mA}$
$22-0.2250 \mathrm{~mA}$ $22-0.2250 \mathrm{~mA}$
24 V 100 mA
24 V 50 mA 24 V 100 mA
24 V 25 mA
30 V 50 mA 30250 mA
$30-25-0-25-30,1 \mathrm{~A}$
$0.2-4-6-8-105 \mathrm{~A}$ $0-2-4-6-8-105 \mathrm{~A}$ BURROWS CONNECTOR
(LH) $1701,41 \mathrm{c}$, 20p; Burrows Connector (RH) 1201, 4LC 25p. Large quantities ava
able. METWAY P.C. CONNECTOR
3 -way type P95/3DS, 10p ea ITT TEMPKIT Electronic the mostat
E4 ea. 4-WAY DPD AND 5-WAY
DPDT DIL SWITCHES, by ERG Components and CTS
Gold contacts 80 p ea. Brand new and boxed BuZz
ea.
ea.
WIRE
£20/f1,0
E20/f1,000. SPECIAL OFFER. Mini-toggle switch by C. \& K K., 3 Pc/o.
Long dolly or short, 50 p ea. RESISTORS: Over 2 million in stock at last count 5% E12 range
2 p ea. $£ 1 / 100, \mathrm{E} 6.50 / 1,000$
METAL OXIDE/FILM: Mos values in E24 range, $1 / 4-2 \mathrm{~W}$ 5
2 or 1%. A few values in 0.1%
, Tolerance available.
WIRE WOUND: ORI-100K 3 200 W . A selection of mains droppers available. Good
selection of metal clad high selection of
power types
ROTARY SWITCHES
Over 30 different types avail-
from 45 p miniature latching MINIATURE
SWITCHES, 3 Pc/o by Micro a division of Honeywell Ltd.
3 amp 250v a.c. Part No 3 amp 250 V a.c. Part No
8 N 3011 , $£ 1$ ea. Miniature momentary 1 Pc/o switch by
Micro, 3 amp 250v A.C. Part Micro, 3 am
No. 8 N 1021 WHISPER FANS 4,5 Type number WR2A1. 115
volt, $50 / 50 \mathrm{HZ} 7$ watt. Brand

SPECTRA
100 ft
STRIP CABLE 100ft lengths, $25-$-way,
twisted pair, $£ 130.00$ per box, discount on quantity.
We have large quantities of
 Price $£ 20.00$ each. All in
good condition. Callers collect.
SPECIAL OFFER: 0.1% TOL
In SPECIAL OFFER: 0.1% TOL
ressistors. The folloowing
values available: $2 \mathrm{~K}, 3 \mathrm{~K}$, $10 \mathrm{~K}, 30 \mathrm{~K}, 1 \mathrm{M} \Omega$, Welwyn
Filmet. Price 30 p each. CERMET PRESETS 15p ea
10 A 250 AC ACILUMINATED 10A 250V AC ILLUIINA
ROCKER SWITCH Red, DP ST $26 \times 30 \mathrm{~mm}$ Snap-in type
ALUMINIUM BOXES: AB7 $134 \times 64 \times 38 \mathrm{~mm}$ AB8 $102 \times 102 \times 38 \mathrm{~mm}$
AB9
$102 \times 57 \times 38 \mathrm{~mm}$ AB10 $102 \times 133 \times 38 \mathrm{~mm}$ AB11 $102 \times 64 \times 51 \mathrm{~mm}$ AB12
AB13 $152 \times 5 \times 102 \times 51 \mathrm{~mm}$
AB14 $178 \times 2751 \mathrm{~mm}$
f AB14 $178 \times 127 \times 1 \mathrm{~mm}$
AB15 $203 \times 152 \times 76 \mathrm{~mm}$
AB16 $254 \times 179 \times 76 \mathrm{~mm}$ ABB $25 \times 179 \times 76 \mathrm{~mm}$
AB17 $254 \times 114 \times 77 \mathrm{~mm}$
AB18
 BLUE REXINE COVERE
ALUMINIUM BOXES

RB3 $229 \times 127 \times 89 \mathrm{~mm}$
RB4 $479 \times 152 \times 102 \mathrm{~mm}$
$\mathbf{E} 3$
\mathbf{E},

 $75 \times 50 \times 25 \mathrm{~mm}$ BLIC BOX $80 \times 60 \times 40 \mathrm{~mm}$
$90 \times 70 \times 40 \mathrm{~mm}$ $.115 \times 5 \times 50 \mathrm{~mm}$
$110 \times 90 \times 45 \mathrm{~mm}$ $110 \times 90 \times 45 \mathrm{~mm}$
$170 \times 100 \times 50 \mathrm{~mm}$ $200 \times 120 \times 80 \mathrm{~mm}$ 16A 250V AC ILLUMINAT
ROCKER SWITCH (Amber). $14 \times 30 \mathrm{~mm}$ rectang
ular snap-in type. SPST ular snap-in type. SPST 30 .
LICON ILLUMINATED LICON ILLUMINAT
SWITCHES 01-800 Rectangular Snap-in
Series
PCO Latching
P1.50 2PCO Latching
2PCO Momentary $\begin{array}{r}\text { E1.50 } \\ \mathbf{E 1 . 5 0} \\ 50 \\ 50\end{array}$
 WIREWOUND POTS 1RO-100K by A.B. Colvern
etc. $11 / 2 \mathrm{~W} 40 \mathrm{p}, 3 \mathrm{~W} ~$
80p, 5 W 80p. TRIMPOTS 10R-500K $10 / 20$ turn. $11 / 4 \mathrm{in}$
or $3 / 4 \mathrm{in}$. rectangular 60 p ea or $3 / 4 \mathrm{in}$. rectangular VU METERS $40 \times 30 \times 23 \mathrm{~mm}$ deep
White/red scale on black White/red scale on black
background. Brand new. This advertisement is mainly of our excess stockhotding. We also have excellent stocks of semiconductors, hardware, cables,
etc, etc. For further details send for our lists and retail price catalogue, phone or visitiour shop. All prices are ecclusive of VAT
(and P\&P). Minimum Mail Order $£ 5+$ P\&P + VAT. Government departments, schools, colleges, trade and export welcome.

Central Semi~ Conductors

Production problems?
We guarantee prime parts \& ex-stock delivery on all common I.C.'s
Here is part of our list
Z80A

Z80A	-	$£ 4.50$
8085 A	-	$£ 4.50$
8156	-	$£ 5.50$
8255A	-	$£ 3.20$
8251A	-	$£ 3.80$
2716	-	$£ 3.20$
200 ns	4164 (64K Dynamic) $£ 14.00!!$	

200 ns 4164 (64 K Dynamic) £14.00!!

01-624 8581

BUILD YOUR OWN

 QUARTZ LOCKED DIRECT DRIVE TURNTABLE

Complete Quartz Locked Motor, Die-Cast Turntable and Wir ing Circuit, £19 + V.A.T. $£ 2.85$ at 15% including postage and
packing. This offer applies to U.K. and Northern Ireland. For quantity discount and export please ask for quote. Per-
sonal callers are welcome. lenclose cheque, postal order, Access, Barclaycard

NAME
ADDRESS.

HIFI \& TV REPAIR CO
ww - 081 FOR FURTHER DETAILS

Access we welcome Barclaycard VISA

MEMORIES

Please add 50 pence for carriage. All prices EXCLUDE VAT Please send s.a.e. for full list.

STRUTT LTD.

3d BARLEY MARKET STREET, TAVISTOCK DEVON, ENGLAND PL'19 0JF Tel. Tavistock (0822) 5439/5548. Telex: 45263

WW - 089 FOR FURTHER DETAILS

reprints

If you are interested in a particular article/ special Feature or advertisement published in this issue of

WIRELESS WORLD

why not take advantage of our reprint service Reprints can be secured at reasonable cost to and valuable addition to your promotional material. (Minimum order 250.)
For further details contact
Martin Bloomfield, IPC. Electrical-Electronic Press td. Phone 01-661 3036 or simply complete

To Martin Bloomfield, Reprints Department Quadrant House, The Quadrant
am interested in copies of the article advertisement headed featured in
on page(s)
VIRELESS WORLD
Please send me full details of your reprint service by return of post.
Name
Address

MRELESS WORLD SEPTEMAER

TV TUBE REBUILDING

Faircrest Engineering Ltd, manufacture a comprehensive
range of equipment for processing all types of picture tubes, colour and mono. Standard or custom built units for estab. lished or new businesses. We export world-wide and have an
excellent spares service backed by a strong technical team..
 equirements.
For full details of our service contact Neil Jupp
FAIRCREST ENGINEERING LTD.
4 Union Road, Croydon, CRO 2 XX
$01-6841422 / 01-6840246$

Barrie Electronics Ltd.
3,THE MINORIIES,LONDON EC3N 1BJ TELEPHONE: O1-488 3316/8

WW - 036 FOR FURTHER DETALLS

The exeling new name in Tinear I/Cs

Analog Systems, the fast growing linear $1 / \mathrm{C}$ company
of Arizona whose products are available from Ange of high performance linear integrated circuits.
rang who Super Low Noise Amplifiers MA 106 600pV/ $/ \mathrm{Hz}$ input bandwidth.
12.5 mW dissipation Guaranteed no popcorn noise
Slew rote $50 V /$ sece
performance exceeds that of
$\mathrm{MA} 3223.5 n \mathrm{~V} / \mathrm{VHz}$ innut noise,
50 MHz gain bandwidth product.
 quiefer than BIIFET.
Performance exceeds that of
IF 356 . IL 071 LF $357,0 \mathrm{O}-17$

Q ANPLDE
SYSTEMS sYETEMS

Send for full product listings of listings of Analog Systems exciting product range

DO YOU GET STUCK IN THE BATHROOM WHEN THE PHONE RINGS? NOT WITH A CORDLESS TELEPHONE YOU WON'T!

The model 17005 cordless electronic telephone operates just
like a standard telephone however, provides much more mobil like a standard telephone however, provides much more mobil-
ity than phonens with even the longest cord. The system consists
of one base unit and one portable unit The efetive ity than phones with even the longest cord.
of one base unit and one portactive unit. The commu-
nication range betweon erase nication range between base and portable units is 700 feet (200
metres), , but this range varies depending on environmental con-
ditions, building construction, location, Please, bullding construction, location, etc.
Please allow 28 days for delivery
Ring the sales office for quantity
discounts.

WW - 090 FOR FURTHER DETAILS

As the range of equipment costing less than $£ 300$ increases, so too does the
need for a magazine to inform and odvise the home computer enthusiast. That's where for Your Computer comes in. Just look at the August/Sep tember issue.

- Review of the exciting VIC-20, Commodore's bid for the home compute
market, priced at only $£ 189$
- How good are you at chess? A survey of chess games and a program which
- Acorn Atom Graphics. Introduction to the advanced graphics faciilities on the
Atom and how to display graphics end normal characters simultaneously.
- Single board computers as controlle rs. How a micro computer can be used to
control equipment such as lights, thermostats and burglar alarms.

Also in this big value issue: what next from Clive Sinclair? Computer Club - you club page. Calculator news, reviews and programs and a competition which
gives you a chance to win the fabulous new VIC-20 computer. All this for only $\mathbf{5 0}$. Why not ask your newsagent to put in a regular order? O

To: Marketing Department, Room 316 IPC Electrical-Electronic Press Ltd
Quadrant House, The Quadrant, Sutton, Surrey SM2 5 AS. Please send me 12 issues of Your Please send me 12 issues of Your Computer starting with the following
issue: (Tick one box only to show when subscrip tion should start)
June-July $81 \square$ August-September $81 \square$ October $81 \square$ I enclose a cheque/P. O. for $£ 0$ UK/ $£ 12$ Overseas, payable to
IPC Business Press Ltd.

Name
Address Review of the exciting VIC-20, Commo

£68. Post $£ 2$. Spare tape $£ 5$

Sockers. -pin 5-pin iop. Free Sockets 3-pin, 5 -pin 25p.

POTENTIOMETERS Carbon Track

U.K. RETURN OF POST MAIL ORDER SERVICE. ALSO WORLDWIDE EXPORT SERVICE

RADIO COMPONENT SPECIALISTS

08									
ANDS COMPOMENTS									
DEVICE	Price	device	Price	device	PRICE				
2650 FAMIILY		8080 FAMILY		Z80 SIO-1 17.50					
2651	10.90	8085A	3.00 8.05	Z80 S10-9 11.50					
2652	18.35	8155	8.75	Z80A SIO-0Z80A SIO-123.50					
${ }_{2661-1}$	9.00	8156	8.75						
6100 FAMILY		8212	1.95	Z80A SIO-2 23.50		single sided mini floppy drives so please get orders			
		8216 8224	1.80 2.25	Z80A SIO-9 15.50					
$\begin{aligned} & 6100 \\ & 6101 \end{aligned}$	9.25 6.40	8226	1.25 1.80 5	9800 FAMILY					
6102	17.75	8228 8238	5.50 5.50	9980A	20.00	in soon			
6103 6402	$\begin{aligned} & 6.75 \\ & 3.80 \end{aligned}$	8251	5.50 3.85	${ }_{9}^{9981}$	29.30	Total U.K. price including VAT at 15% and			
6403 6800 8.50 6 FAMILY		8253	. 00	9902	8.52				
		8255 825	3.55 7.95	9903	25.55	carriage, CWO			
6800	3.80	8279	10.50	${ }_{9914} 9$	28.46 19.29	ONLY £155 EACH INCLUSIVE			
6802	5.75	TMS5501	15.00	9927	27.39				
$\begin{aligned} & 6808 \\ & 6810 \end{aligned}$	$\begin{aligned} & 4.45 \\ & 2.17 \end{aligned}$	Z280 FAMILY		[MEMORIES		(Drive $£ 132, \mathrm{P}$ and $\mathrm{P} £ 2.78$, VAT $£ 20.22)$			
682	2.52	280 CPU	4.10	2101	1.15	Please make cheques and P.O.s payable to			
6840	5.50	280A CPU	6.25 4.40	2102	$\begin{array}{r}1.15 \\ 1.25 \\ \hline\end{array}$				
6850	2.00 2.47	z80 CTC Z80A CTC	4.40 5.25	2111 2112	1.25 1.35	W.W. Disk Offer and send to:			
6854	4.60	280 PIO	4.25	2114	3.25	W.W. DISK OFFER			
680	5.64	Z80A PIO	4.95	2708	3.45				
68488	5.43	Z80 SIO-017.50		2708-4 $\quad 1.50$		49 Milford Hill			
				Batford Herts					
74LSO00	0.14 0.15	74LS112 $74 L S 113$	0.25 0.25			74LS243	. 105		
74LS02	0.14	74LS114	0.25	74LS245	1.60	Please call 0582-429122 to check on availability before ordering			
74LS03	0.15	$74 \mathrm{LS122}$	0.42	74 7-247	0.80 0.45				
74LS04	0.15 0.15	74LS123 $74 L S 124$	0.59	74LS251	0.45				
74LS09	0.15	$74 \mathrm{LS125}$	0.30	74LS257	0.50	Allow 21 days for delivery. This offer applies to U.K. only and is subject to availability. For non U.K. orders send SAE for quotation			
74LS10	0.14	74LS126	0.30	74LS258	0.50				
74LS11	0.15	$74 \mathrm{LS132}$	0.50	74LS261	1.98				
74LS12	0.15	$74 \mathrm{LS136}$	0.27	74 LS266	0.25	WW - 051 FOR FURTHER DETAL			
74LS14	0.30 0.50	$74 \mathrm{LS138}$	0.75 0.40	74LS273 $\mathbf{1 . 1 0}$ 74LS279 74LS280 $\mathbf{0 . 4 2}$ 4.15					
74LS15	0.15	74LS139	0.40	74LS280	2.15	CLEF eLECTRONIC MUSIC			
74LS20	0.14	74LS145	0.80	74 LS283	0.70 0.60				
74LS21	0.15 0.15	74LS147 74 LS148	1.20 1.08	74LS290	0.60 0.60				
74LS27	0.15	74.5151	0.42	74LS295	1.05		Kit \%os RHYTHMM,		
74LS28	0.20 0.15	74LS153 $74 \mathrm{LS155}$	0.42 0.55	74LS299	1.05 2.50				
74LS32	0.15	74LS156	0.55		0.39				
74LS33	0.17	74LS157	0.38	$\begin{array}{ll} \text { 74LS366 } & 0.39 \\ \text { 74LS367 } & 0.39 \end{array}$					
74	0.18	74 LS158	0.38						
74LS40	0.15	74LS161	0.45	74LS373	1.05			we operatit velenhone	
74LS42	0.45	74LS162	0.45	74LS374	1.05				
74LS43	0.50	74LS163	0.45	74 LS377	1.05	- voices for			
74LS44	0.50	74LS1	0.62	74L5378	0.75		CLEF PRODUCTS (ELECTRONICS) LIMITED Dept. W, 44a Bramhall Lane South Bramhall, Stockport, Cheshire SK7 1AH - 061-439 3297		
74LS51	0.15	74LS166	1.40	74LS386	0.27 0.27				
74LS54	0.15	74LS170	1.50	74LLS393	0.75				
74LS55	0.15 0.25	74LS174	0.72	744S395	1.15 0.67				
74LS74	0.20	74LS181	1.45	74LS669	0.67	WW - 035 FOR FURTHER DETALLS			
74LS5	0.30	74LS183	1.96	74LS670 1.65					
74LS76	0.25	74LS190	0.60						
74LS78	0.30	74LS191	0.60	81 LS966		PPM3			
$\begin{aligned} & \text { 74LS83A } \\ & \text { 74LS85 } \end{aligned}$	0.55	74LS132 7415193	0.65	$\begin{array}{ll}\text { 81LS97 } & 1.32 \\ 81 \text { LS98 } & 1.32\end{array}$		drive circuit to IEC268-10A, BS4297, draft in equipment which will be ray be used pass IBA Code of Practice inspection. Aligned and soak tested 7 days or as a kit.			
74LS86	0.20	74LS194	0.65	$\begin{array}{ll}8 T 26 A & \mathbf{1 . 6 0} \\ 8 \text { 828 } & \mathbf{1 . 6 0}\end{array}$					
74LS90	0.35	74LS195	0.60						
74LS91	0.35	74LS196	0.65	$\begin{array}{ll}8 T 288 & 1.60 \\ 895 & 1.50 \\ 89795 & 1.50\end{array}$			critical programme monitoring by IBA EBU and SUM AND DIFFERENCE changeover board ing adaptors and lillumination kits from stock. NEWUDUCT: Proadcast Monitor Re- ceiver 150 KHz R-30MHz EXHMBTING AT ceiver ${ }^{1506 H Z-30 M H z}$ EXHIBTITING AT SOUND BROADCASTING SHOW, Sept.		
74LS92	0.35	74LS197	0.65	$\begin{array}{ll}8796 & 1.50 \\ 8797 & 1.50\end{array}$					
74LS93	0.35 0.50	74LS221	0.60 1.10	8797 8798	1.50 1.50				
74LS107	0.50 0.25	744S241	1.10	${ }^{87125}$	2.30				
74LS109	0.25	74LS242	0.85	8 T245	2.30				
TERMS: C.W.O. Mail order only. Please add 40p post and packing and then 15% V.A.T. to the total order.									
ANDIS CONPONENT LI						SURREY ELECTRONICS The Forge, Lucks Green, Cranleigh Surrey GU6 7BG.			
		Street, Dert	DE3 3				, Deviation Meter * Programme and viation Chart Recorders *Stereo Disc		

WTATR RRGEREREORMANGE EROM CRONEGER NOtAIOT-DOwTITIEAMH

$\mathrm{DC}-15 \mathrm{MHz}$
Bandwidth
TYPE 3030
Triggerad and
automatic swoep
5 mV /div sensitivity Triggering to 20 MHz
200ns - $200 \mathrm{~ms} /$ /div
sweop spoeds $\quad \begin{aligned} & \text { Fully rogulatad high } \\ & \text { and low voltage }\end{aligned}$
sweep speods
Rectangular CRT $\begin{aligned} & \text { and low voltage } \\ & \text { supplies }\end{aligned}$
Compact and
lightweight $\quad{ }_{\text {signal }}^{200 \mathrm{mV}}$ Calibration
Compact and
BULIT-IN
COMPONENT
OMPONENT TESTER
£795*

TYPE 3131

$\underset{\substack{\mathrm{DC} \\ \text { Bandwidth } \\ \\ \text {-15MHz }}}{ }$ $5 \mathrm{mV} / \mathrm{div}$ sensit on both channels Algobraic addition
and subtraction $X-Y$ Operation built-IN BUILT-IN
COMPONENT TESTER ${ }^{5 \prime \prime}$ CRT Triggering to 35MH \mathbf{z} Modulation 10×8 div display TV Frame trigger

ع230*
3030 and 3131 just two models in the range, reflect the Crotech philosophy of buildingin extra performance. Both
scopes offer the full specification scopes offer the full specification you expect and demand. But now the extra: both feature a plays the characteristics of active and passive components either in or out of circuit. This benefit extends both instruments beyond the limits of a normal scope. The price?, well that speaks for itself.
For details telephone Reading
(0734) 866945 and ask for (0734) 866945 and ask for our full catalogue.

Crotech instruments Limited 5 Nimod War, Elar F Road, Reading, Berks. RG2 oes.
ww - 048 FOR FURTHER DETALLS
 opportunity to see how easy it is to button.
Come and see why the most important companies in Britain are now heavily involved in viewdata. Benefit from the vast experience o exhibitors like British Telecom, GEC, Philips,
Granada, Rediffusion, Radio Rentals, Visionhir ITT, Bishopsgate, Centronics, Viewdata Business Systems and many others who are there to .

OPEN NEW DOORS FOR THE EFFICIENT DEVELOPMENT OF YOUR BUSINESS Entrance to the exhibition is FREE by registration So save time at the door.
WRITE FOR YOUR ADVANCE TICKETS TO: Viewdata Tickets. IPC EExhi
Sutton, Surrev SM1 4 QQ.
Please note all applications for tickets must be received by October 26.
1981 to allow time for processing. of this issue, please complete one or more of the attached cards entering the reference number(s). Your enquiries will be passed on . Your enquiris will be passed on to the manufacturers concerned and you can expect to hear from them direct in due course. Cards posted from abroad require a stamp. These Service Cards are valid for six months from the date of publication.
Please Use Capital Letters
If you are way down on the circulation list, you may not be getting the information you require from the journal as soon as you should. Why not have your own copy?

To start a one year's subscription you may apply direct to us by using the card at the bottom of this page. You may also apply to the agent nearest to you, their address is shown below.

OVERSEAS SUBSCRIPTION

 4528, Nicosia

 Oracees:Hollonic
 STnalou A Avenuee,
Noo Smyni, Grecce.
 nilu: International Bo
 Cama Road, Bombor 1
Iran: A.D.A. 151 Khie
Sorave, Tohion Hral: Stotmarizk's.

Postage
paid by
Licensee

Do not affix Postage Stamps if posted in
Gt Britain, Channel Islands, N I reland or the Isle of Man

BUSINESS REPLY
icence No 12045
WIRELESS WORLD Reader Enquiry Servic
429 Brighton Road South Croydon
Surrey CR2 9PS

Enquiry S Readers

 Wireless World: Subscription Order Form

To become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to :

Subscription Manager,
IPC Business Press,
Oakfield House, Perrymount Road,
Haywards Heath, Sussex RH16 3DH,
England

 The manufacturers will send 2 PACKS, post free, $£ 25+$ VAT The single development pack costs only $£ 15$ + VAT, p\&p.
To ocepept this. offers simply Circle No. 87 on reader service card. For 4 page
Tolder only circie No. 8 .

SPECIAL INTRODUCTORY OFFER

Kit Case System

Invaluable for prototype, pre-proauction, experimental and design projects in the electronics, electrical, instrumentation, control, general engineering and other industries.

This KIT CASE SYSTEM, is a new concept offering modular design flexibility, self assembly, extreme versatility, providing a
wide variety of shapes and sizes of cases to be built. The basic ystem builds 12 sizes of cases in 36 combinations. Two packs (see special offer) - over 30 sizes - 1000 combinations.

The high quality kits are produced in high impact, flame retardant A.B.S.

Special features incluje nylon insulating pillars, precision moud many more to focilitate ease of fitting P.C.B.S., faciags,
and dummy front panels, rigidity and rapid assembly.
Cobb-Slater Instrument Company are specialists in precision

COBB-SLATER INSTRUMENT CO LTD Cosim Works, Darley Dale, MATLOCK. Cosim Works, Darley
Derbyshire, DE4 2 GG.
Tel: Darley Dale 2344.
© LCD alpha/numeric (dot mat
rix
strocolling display $(86$ $\star \begin{aligned} & \text { types } \\ & \text { Variable input capacity from }\end{aligned}$ *
32
fitunctional program steps
wit
88 with 88 independent
memories to 512 steps with 22 memories.
\# Memory and program reten
tion when switched off. \star Up to 10 pairs unconditiona - Conps (GO10). Manual jump. jumps. Indirect adddressing. \star Up to 9 subroutines. Nesting $\star 50$ built-in scientific func tions, all usable in programs.
\star PAM (perfect Algebraic

FURTHER DETAILS

J(1)NTHIDPRODBSECDVIS...

 advisory service
SPECIFICATIONS

- Power output is quoted in wrMs and is given for twom
one modue per PSU or if using a stabilised power supply.

Appointments

DISPLAYED APPOINTMENTS VACANT: $£ 13.50$ per single col. centimetre (min .3 cm) LINE advertisements (run on): $£ 2.50$ per line, minimum 5 lines. (Prepayable).
BOX NUMBERS: $£ 1.50$ extra. (Replies should be addressed to the Box advertisement, c/lo Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.)
PHONE: OPHELIA SMITH, 01 -661 3033 (DIRECT LINE)
Cheques and Postal Orders payable to IPC Business Press Ld

ALWAYS AHEAD WITH THE BEST!
 E5,000-15,000

PDP 11: NOVA: ECLIPSE: Z80: 8080: 6800: BIT-SLICE: TTL cessors: Flight Simulators: ATE: Electro-Medical: Teletext:
Data-Comms: Automation: Microwave? Where does your skill and interest lie
Design? Test? Service? Software? Consultancy? or perhaps Research?

* Orr clients are drawn from all sectors of industry:
* Mase your first call count - Contact MiKE GERNAT on $076384676 / 7$ (usually until 8 p.m.) electronic computer and management appointments limiten

SENIOR ELECTRONICS
 TECHNICIAN
 GRADE MPT III

Medical ta charge of an Electronic and Bio-

Medical Department serving the
Wolverhampton Area Health Authority
Woiverham
hospitals.
The app
applicant must be fully experienced in
atronics field and experience in medical the electronics field and experiencer
engineering would be an advantage. qualificationts of OUSt hold a minimum
equivalent. equivalent. Salary is $£ 5223$ rising to $£ 6750$ per annu Nommence at the beginning of the salary scale An application form and job description may
be obtained from Mr H Gerrin, Area Personne Officer, Area Administrative Offices, Wolverhampton Area Health Authority, New
Cross Hospital Wolverhampton WV10, Further information may be obtained from Mr J A Simpson, Area Engineer, New Cross
Hospital. Telephone Wolverhampton 732255
Ext. 2735 .
W
WOLVERHAMPTON
Area Health Authority

TECHNICIAN (MOBILERADIO) to $£ 8500$ Western Home Counties
 This subsidiary of a world-wide group markets a diverse range of electrical and electronic products throughout the UK. may also be called up. triining programme.
 Applications are. invited from candidates qualified by experience of installation and service work in the dy ynamic team. Candidates
 these dutiies, a company y ar beinde tro travel widely in the course of The benefits packaee includes
 The benefits package includes a contributory pe life assurane p puus senerous relocoation assistance. Please write
 Please write e with fill career reteatill ors telephnone for an application form in strict oonfidence quoting ref wW/595
 Gum mimen
 GeRRARDS
 Gerrard Recruitment Service, 35 Chapel Side, Moscow Rd., W2 4LJ. Tel: 01 F27 3481

Railway Telecommunications Projects Management

c. $£ 10,000+$ Car

The world-wide revival of interest in rail transpor and mass-transit systems is providing the greatest ever challenge and opportunity for companies manuTo meet this challenge it is necessary to harness
Tharing raiway sill elecommunications techniques to established and proven railway control systems
Our British client, an internationally respected leader in this field is therefore looking for an engineer conversant with the latest developments in telecom-
munications and thoroughly familiar with present and potential applications and sources of supply. Working as Project Manager within a multidisciplinary team of engineers the person appointed
will be able to identify and recommend suppliers and
Austin
Knight Selection

UNIVERSITY OF OXFORD INORGANIC CHEMISTRY LABORATORY SHELL
EXPERIMENTAL OFFICER

Applications are invited for the above post established by newal to an established grade 1 A , wost, to possibility for re mentation services to the Inorganic Chemistry Laboratroy
The instrumental needs of the department involve mainten ance, calibration and alignment, design and development,
and computer interfacing of an tinceasing variety of instru-
ments that include high-resolution n.m.r. es. ments that include high-resolution n.m.r., e.s.r., mass spec
trometry, pe....., and magneometers. Kowledge of moder
electronics, computer technology, vacuum to electronics, computer technology, vacuum technology,
electron guns and ion sources, magnetometers, and the
techniaues of high temperature and high pressur relevant. The post offers particiceation in the devevsure are a
modern instrumentation in a department active in research
 utilizing a w wide range of techniques. The scope of the pos
will be defined by the measure of the person who occupies it
A background in electronic enginering A background in electronic engineering, physics, or physical
chemistry would be appropriate. Salary in the range $£ 6,70$
to $£ 10,575$. to $£ 10,575$.
Applications stating age, qualifications, present salary, and
experience along with the names and addresses eferees should be sent to the Administresses or two Chemistry Laboratory, South Parks Road, Oxford OX1 30R
contractors, prepare tender estimates, liaise with lients and act as project co-ordinator for all telecommunications aspects of a contract through to
The ideal applicant would be a young qualified engineer, with a genuine interest in railways and a good knowledge of the working practices in that
Career progression is assured for the person who makes the right contribution in this stimulating new A of technological development. he chance to live in an extremely pleasant pand England which offers a wide range of educational, ultural and recreational activitie Please send written applications, giving full career de consultant advising number, in confidence, to AK Selection, Ref 71/JS, Austin Knight Limited, London W1A 1DS.

SERVICE/CALIBRATION TECHNICIAN

Electronic Brokers Ltd are Europe's leading suppliers of refurbished Test and Computer equipment. Due to internal promotion we have a position available in our service department for an experienced Technician.
The position requires a thorough knowledge of repair The position requires a thorough knowledge of repair
and calibration of the leading Test equipment manufacturers, e.g. Tektronix, Hewlett Packard, Fluke and Marconi.
The successful applicant would join a team of technicians working in a friendly environment but supervision.
This is an opportunity to join a small expanding company in a position that provides both varied and interest King ' K . The company is situated with in easy reach of king Cross and Ser to the stans and excellent s
candidate.
For further details please contact
Mike Jones
ELECTRONIC BROKERS LIMITED
61/65 King's Cross Road
Telephone: 01-2783461, Ext 35

Appointments

WIRELESS WORLD SEPTEMBER 1981

Electronic Engineers What you want, where you want!

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary evels from around $£ 4000$ to $£ 12000$ p.a.
If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

Please send me a TJB Appointments Registration form:
Name .
Address.

TJB ELECTROTECHNICAL
PERSONNEL SERVICES,
2 Mount Ephraim,
Tunbridge Wells,
Kent. TN4 8 AS.
H. TA 089239388

Tel: 089239388

BIRKBECK COLLEGE

Part-Lime Evering Degriee
Courses in Physics Ociober 1981
Birkbeck offers evening courses leading to B.A. and B.SC
Honours degrees and higher degrees of the University o London. Courses are designed so that students may continue to earn their living during the daytime. Interviews for courses
in Physics (to commence in October 1981) will be held from in Physics sto co
June onwards:

B.Sc. Physics

A.Sc. Physics
A comenensive course in theoretical and experimental
Physics covering all the major fields. Physics is also availab Physics covering all the major fields. Physics is also availab
with Mathematics or Chemistry for a Combined Sciences with Mat
degree.
M.Sc. Nuclear and Particle Physics A two-year course, two evenings a weel
theoretical or experimental projects.
M.Sc. Solid State Physics and Devices Starting October, 1982; a new two-yar course on the theory
of the electronic properties of solids, with uractical of the electronic properfies of solids, wit
applications to semiconductor devices.
M.Phil./Ph.D. degrees

Part-time and full-time research students may be accepted in
the following fields:
(a) Theoretical: Fundamental and Nuclear Physics
(b) Experimental: Atomic, High Energy, and Solid State

Further information and application forms may be obtained
from the Assistant Registrar, Birkbeck College, Malet Street, from the Assistant Registrar, Birkbeck College, Maet Sireet,
London WCit 7HX TTel: 1 1-637 9563, answering machine Lont of office hours), or trom the Ph
College (Tel. $01-580662$, ext. 289).

Laboratory Technicians

Put your experience to the test.

That's the challenge we're throwing open to but experience and enthusiasm are essential and qualified, experienced men and women who
want to use their skills in a stimulating enwant to use their skills in a stimulating en- your hobby Current salary scales range to
vironmentonawide variety of sophisticated equipment.
In the BBC's Equipment Department based at Chiswick, West London - we manufacture prototypes and small batches of hightechnologyequipment
for use in broadcasting. The work is for use in broadcasting. The work is
very varied -it's not just productionvery varied-it's not just
and involves testing, diagnostic fault finding and calibration of digital, analogue and signal proce sing equipment. Your qualifications
could be T.E.C. Certificate or equivalent also stand up well to close inspection - they're very attractive. If you hold a Higher T.E.C. Certificate
posts with salaries ranging posts with salaries ranging
to $£ 9882$ p.a. are to $£ 9882$
available.
Giveusaringor write if you want
more information and an application form to:P.W. Green,
BBC, Avenue BBC, Avenue
House, Power Rd., House, Power Rd.,
London W4 5PG. (Tel: 01-994 8541 Ext: 232).

BBC

Senior Television Engineer

£8862-£9363 p.a. inc.

An opportunity to join a specialist team supporting
teaching using the Polytechnic's extensive film and teaching using the
television facilities
television facilitites.
Based at Cockfosters, North London, you
responsibilities would include the design, installation and maintenanceo of all systems and the supervision and
training of technical operations staff trainin - operation of television studio equipment, with particula emphasis on colour systems at professional
broadcasting level, is essential, together with broadcasting level, is esse
appropriate qualifications.
appropriate qualifications.
Write quoting ref. L320D for further details and an application form, posting first class to: Personnel Offic Middlesex Polytechnic, 114 Chase
5PN. Closing date: September 1 .

Middlesex Polytechnic

B CAPITAL

CAPITAL HOUSE 29-30
STRET
ST LONDON W1P 1HG
THE UK's No. 1 ELECTRONICS AGENCY
Design, Dev. and Test to $£ 10,000$
Ask for Brian Cornwell
Ask for Brian Cornwell
SALES to $£ 12,000$ plus car
Ask for Maurice Wayne
FIELD SERVICE to E10,000
Ask for Paul Walli
We have vacancies in ALL AREAS of the UK
Telephone: 01-6375551 (3 lines)

MICRO - R \& D
A company has been formed by a ell known successful U.K. Group to develop high technology electronic products and it has strong support: hardware and software engineers are required with background, experience and
qualifications in micro technology to speed the progress in developmen systems and dedicated micro
processor and communication devices. Joining this powerfully backed new company will provide good
recognise the creative nature of the work and will be negotiable for senior engineers. Apply (in confidence) to
Box No. W.W. 1278
c/o Wireless World, Quadrant House,
Surrey SM2 4AS

Appointments

Engineer - Transmitters

We have a vacancy for an Engineer (male or female) to work in the Transmitter Project
Section of our Station Design and Construction Department. You will be required to assist in the preparation of specifications for transmitter and You will also assist in the installation and commissioning at site and will also be involved in the evaluation of new designs of equipment. Some design work will be
involved, therefore, ideally you should have a good knowledge of microprocessors an software based systems.
You should be qualified to degree level in Electrical/Electronic Engineering and have
had formal engineering training in broadcasting technology or a related field. You had formal engineering training in broadcasting technology or a related field. You should also have several years post training experience in industry or broadcasting essential as the post involves travel away from base.
The commencing salary (depending upo
The commencing salary (depending upon qualifications and experience) will be on a range which rises to $£ 9,855$ per annum.
expenses will be paid where applicable.

IBA

INDEPENDENI BROADCASTING AUTHORITY

Please write or telephone for an application form quoting reference number. WW/624cc, to Christine Gossli.

Directorate of Telecommunications

Telecommunications Engineers

WIRELESS WORLD SEPTEMBER 198 MARKETING MANAGER with
 2 SUPPORT ENGINEER to provide Vechnical Support and de-
VDPpertise for on-line
PDstem f10,80 Kent 3 O.A. ENGINEER work on MicroElectronic Commercial and Mill
tary equipment: $\{9,200$

SENIOR ELECTRONIC TECHN CIAN running laboratory de
veloping specialist handling veloping specialist han
equipment $£ 10,000$ Berks. SENIOR ENGINEERS to design
computerised display systems compunterised display systems
foridititary pplications. $£ 10,000$
Mididesex dEVELOPMENT ENGINEER E Devience. of microbased con entr
systems f10,000 London. Phone or write, Anthony Giles,
M.Sc., Eng., M.I.E.E. CLIVEDEN CONSULTANTS 87 St. Leonard's Road
Windsor, Berks

CTVIEDEN

WANTED
EIECTRONICS
ELECTRONICS
with U.S. Embassy component in the
Reading area. Mss have strong techni. telecommunications engineering in and mus have several years' professional experience in at least one of the following fields: land
mobile radio, link-planning, data communications, PCTV, line communications PABX' or frequency
planning. Starting $£ 11,215$ according (under review) $£ 9,615$ experience. Promotion prospects.
For futs form (to ferther details and an application write to Civil Servic by September 10, 1981 Write to Civil Service Commission, Ale
Link, Basingstoke, Hants, RG21 IJB, or
telephone telephone Easingstoke (0256) 68551
lanswering servico operates (answering service operates outside office
hours). Please quote Ref: $T / 5620$.
Home Office

URGENT!

PROJECT LEADER. $£ 11 \mathrm{~K}$
Senior Engineer required, $28+$, with 280 HW/SW experience,
DIGITAL DESIGN ENGINEERS. $£ 8 \mathrm{~K}+$
experienced Engineers with background in digital TV
SOFTWARE ENGINEER. $£ 8.5 \mathrm{~K}+$
Must have experience in 280 HW/SW, Herts area
WE HAVE LOTS MORE JOBS FOR
EXPERIENCED ELECTRONICS/ COMPUTER ENGINEERS SALARIES TO $£ 15 \mathrm{~K}$
Contact: Tony Rath, Blue Arrow Executive Selection
50 Bedford Street, London WC1.01-240 $0893 / 4$

BlueAmow
Executive Selection

Appointments RELESS WORLD SEPTEMBER 1981 ADDALTTLE POWERTO If you have a
technical electrical/
electronics background, now's your chance to within industry.
This cours
advance your career and

$$
\begin{aligned}
& \text { qualify as an Electrical Engi } \\
& \text { HOW CANI QUALFY? }
\end{aligned}
$$

By taking our special one year course at the Chelmer Institute Higher Education, Chelmsford. It starts in January 1982 and
Training Opportunities Scheme WHAT WILL ILEARN? The programme leads to, the Technical Education Council's Engineering

Specific areas include electrical/electronic principles,
industrial studies, telecommunica
tions and engineering principles, computer technology, digital techniques and programming applications. AMIELIGIBLE FOR TRAINING? inElectrical or Electronic Engineering TECCertificate or City \& Guilds T3 level in a related field.

HOW AMIPAID?
During training you'll receive weekly tax-free TOPS allowance and certain other benefits may also be paid. All tuition fees are met by TOPS. POWER TO YOUD A LITTLE All you need to do is just clip the coupon and send it to Rosemary Cantrill, Manpower Services Commission, Training Services, 93 Southchurch Road,
Southend-on-Sea, Essex SSl Southend-on-Sea, Essex SSI 2 NX. You must also have had experience in HM Forces,

PMR/VHF/FM Systems TEST ENGINEER

As part of an expansion programme in the Communica-
tions Division AEL is looking for a Senior Test Engineer tions Division AEL is looking for a S Senior Test Engineer
with several years' experience in the private mobile radio
industry. Involved in the production testing of a new range of high-
quality VHF/FM mobile radio equipment, the job will be
demanding with plenty of technical interest and may demanding with plenty of technical interest and may
involve occasional travel within the U.K. and overseas. Applicants (male/female) will be preferably in their mid-20s to early 30 s , currently working in a test or systems environment with a manufacturer and will be familiar with current
Home Office/MPT specifications.
As a key member of a small team, pleasant working condi-
tions and an attractive salary will be offered to the Please write in the first

John Longhurst, Technical Manage
Communications Division
AERO ELECTRONICS (AEL) LIMITED Gatwick House, Horley Surrey
Telephone Horley (02934) 5353

TELEIISION TECHIICIAN

The Television Facilities Department of a major London advertising agency requires a T.V. Techni cian.
In addition to other duties: Repairing, setting up
and operating, Rank Cintel MK ॥ and Mk III and operating
Telecines.

For much more detail please telephone
much more detail please teleph
Colin Forster on 01-836 2424

CIVIL AVIATION COLLEG
(GULF STATES)
requires
for January 1, 1982
INSTRUCTOR -
AERONAUTICAL

RADIO MAINTENANCE

Qualified and experienced in installation and maintenExtensive instructiol

Salary and allowances up to U.S. dollars 3,800 per
Attractive for single-status candidates.
Apply to:
Civil Aviation College (Gulf States P.O. Box 4050
Doha- Oatar

Principal: Mr. Jassim Al Nusf
ICAO Project Co-ordinator: R. D. Lamond

DEVELOPMENT ENGINEER

Continued expansion has created a new position for a Development Engineer ing in industrial audio communications. This is an opportunity tor an experiencenced engineer, minimum a. 25 , qualified to degree or H.N.C. .evel, to ioin a youngdevelopoing company. Work will be principally (but not limited tol all aspects of Audio and $R F$ F circuit and product design, witht the added benefit of fol through to production. A competitive salary will be offered and, if necessayassistance with relocation will be given.

Appointments potential in ourfuture
 Founded in 1936, Marconi Instruments today employs some 2,000 people in the design, development production and marketing of its advanced
communications test equipment and A.T.E

To meet the challenges of tomorrow's markets, we need more electronics designers and technicians. And to turn new ideas into fully operational equipment we need production and service personnel as well. If you would like to develop your potential in the exciting future of Eur
specialist, complete specialist, complete the coupon and send to us at the address
elow:
marconı instruments Return this coupon to John Prodger, Marconi Instruments Limited,
reepost, St. Albans, Hertfordshire, AL4 OBR. Telephone: St. Albans 59292

 Haraware and Sottware Engineers,
based in West sussex. Competitive
\qquad

HF-VHF-UHF
Microwave Optics \& Acoustics A challenging and full career in Government Service
Candidates, normally aged under 30 , should have a good honours degree or equi alent in a relevant subject, but any candidates about to graduate may be considered, Officer (£6,075-£7,999) or Scientific Officer ($£ 4,805-£ 6,480$) according to qualifications and experience. Promotion prospects. Please apply for an application form to
the Recruitment Officer (Dept. WW 981) H the Recruitment Officer (Dept. WW981), H.M
Government Communications Centre, Hanslope Government Communications Centre, Hanslope
Park, Milton Keynes, MK 19 7BH.

APPOINTMENTS ELECTRONICS to $£ 15,000$
message switch DATA COMMS-TELEMETRY TELEGRAPHY-RF COMMS
 on salary and ati careet
advancement, contact: Technomark

PERSONNELTO SERVICE BUSINESS EOUIPMENTIN THE LONDON AREA

ZIMBABWE

CHANCE FOR YOUNG ENTHUSIAST WITH TOP BRITISH MICRO MAKER TECHNICAL SUPPORT (SALES)

UPTO $£ 5$-7.6K, OXFORD-BASED

Research Machines is one of the leading British manufacturers of microcomputers. Thoussands of
users of our 380 Z , ranging from school teachers users of our $30 Z$, ranging from school teachers
and scientists to technicians and DP professionals, regard it as an essential tool of their
trade. Satisfying their hardware and software trade. Satisin needs and solving their problems -
information nee by telephone and letter - is the first job of
Technical Suppot. Technical Support.
But there's a lot more to this interesting and
challenging vacancy than that. In addition to challenging vacancy than that. In addition to sales
and technical support to customers, you will also and technical support to the sales team; support
give Sales Manager at exhibition
the Sale the Sales Manager at exhibitions and
demonstrations; provide feedback demonstrations; provide feedback to relevant
departments on technical matters and sales departments on technical matters and sales
trends; and liaise between customers and maintenance engineers. In the process you will get
plenty of opportunity for handson plenty of opportunity for hands-ocess experience of our range of hardware and software.

We are looking for a computer enthusiast to join this young, small team in our Sales Depa
The successful candidate will probably:
\square be capable of programming in a high-level language - preferably BASIC; \square have a real interest in microcomputing \square be educated to at least ' A ' level; \square have some admin or sales office experience.
Starting salary is between $£ 5,000$ and $£ 7,600$ offer a number of valuable benefits such as free BUPA, life and disability insurance.
A pension scheme is being introduced.
If you are interested in this vacancy please contact Mrs Ann England, by phone or letter, for an application form, quoting
WW8/1.

RESEARCH MACHINES
 MICROCOMPUTER SYSTENS

RESEARCH MACHINES LTD Mill Street, Oxford OX2 OBW, Tel: (0865) 4979

Classified 124 SITUATIONS VACANT

Telecommunications Officers
Up to $£ 8185$ (under review)

The posts available are varied, but broadly
they fall into 2 groups at 2 different locations. Hanslope Park (Milton Keynes) Work associated with HF communications
equipment, VAF, UHF and microwave links equipment, VHF, UHF and microwave links
and associated test equipment; teleprinters
and other specialised equipment.
Hanslope Park and Central London Work similar to the above, but also including a wide variety of telephone
subscribers' apparatus PMBXS, PAX subscribers' apparatus PMBXs, , PAX,
PABXs and ancillary equipment including
that using analogue and digital technique that using analogue and digital
and voice frequency telegraph.
Candidates must have served an apprenticeship or have hade equivalent
training. They should normally have 3 year training. They should normally have 3 year
relevant experience, and hold ONC in
Engineering with relevant experience, and hold ONC in
Engineering (with pass in Electrical

Engineering ' A^{\prime} ' or TEC/SCOTEC certificate
or City \& Guilds Telecoms Technician Certificate Part II or Part I Plus $3^{\text {" }}{ }^{\text {" }}$ " ${ }^{\text {" }}$ subjects or equivalent qualification in a relevant
subject. Ex-Service personnel who have had suitable training and at least 3 years'
appropriate service (as Staff Sergeant or equivalent) will also be considered. Salary: (under review) £5310-f7170;
London £1016 more. Starting salary may be above minimum for those with additional levant experience. Promotion prospects Relocation assistance may be available. For further information and an application
form (to be returned by 10 September 1981) write to Civil Service Commission, Ale nco
Link, Basingstoke, Hans RG21 1B, or
Lite telephone Basingstoke (0256) 88551
answering service operates outside office
hours). Please quote ref: $T / 5606$.

Foreign and Commonwealth Office

\section*{THE MODERN BOOK CO.} | Specialist tin Scientific |
| :---: |
| Q Technical Books | 19-21 PRAED STREE

Phone 402 -9176 Phone 4 20. -9176
Closed Sat. 1 pom.

 and

ELECTRONS ENGNEERNG Ina Growth Environment

Several major new orders over the last year have ensured that Cossor leading supplier of professional electronics equipment, have kept to a clearly defined and steady growth pattern.
From this platform we are now able to offer an extremely interesting and varied range of responsibilities to Test and Service Engineers who will be inning busy, established and highly regarded teams at Harlow.

Systems Test Engineers

Ideally you will be qualified to HNC electronics standard and will possess at least three years' relevant experience with RADAR or microwave equipment.

In House Service Engineer

Your activities will be concerned with fault finding, diagnosis and overhau of equipments and systems. HNC electronics and relevant experience are essential.
Attractive salaries will be offered for the above positions and excellent company benefits, including relocation assistance where appropriate.

For more information please telephone or write to:
David Hilton, Recruitment Manager,
Cossor Electronics Limited, *FREEPOST, The Pinnacles, Harlow, Essex CM19 5BB. Tel: Harlow (0279) 26862.

cossor
 electronics

ELECTRICAL ENGINEERS WITH RUSSIAN

Electrical Engineers are required for the preparation of abstracts in
No previous experience of abstracting is necessary but a No previous experience of abstracting is neces
good reading knowledge of Russian essential.

Please apply to: The General Manager DERWENT PUBLICATIONS LTD.
 DERWENTPUUBLICATIONS LTD. Rochdale House

Rochdale House, 128 Theobalds Road
London WC1X 8RP
London WC 1X 8RP

E360 PW.?
CONTRACT

t

telesonic

 TELESONIC MARINE LTD.
60.62 Brunswick Centre WC1

ARTICLES FOR SALE

INVERTERS High quality DC-AC. Also "no 19" rack. Auto Charger.
 COMPUTER POWER SYSTEM Interport Mains-Store Ltd. POB 51, London W11 3BZ
Tet: $01-727$ 7042 or 022531016
 Latest external Teletext adaptor

$\xrightarrow{\substack{\text { other test } \\ 0582-425721 / 414717, \text { equipment. }}}$

Classified

INNER LONDON EDUCATION AUTHORITY
LEARNING RESOURCES BRANCH TELEVISION CENTRE
THACKERAY ROAD
LONDON SE8 3TB
The Telvision Centre produces a range of educational proqrammes in
the form of vide ocasseteses sound cassetes sand 1 limm film tor distribu-
 mabie urds
standards.

MAINTENANCE ENGINEER

(ST3) (£8,304-£8,916)
The maintenance section has four members and is responsible for all the
equipmentat the stulio centre, both vision and sund.
 Applicants must have relevant technical aualifications sa knowledge of
digital techniques, would be an aedvantagel, and should have good

SOUND ASSISTANT

(ST2)

 those who are willing tolearn, have appropriate teith
nod experience ilsewhere in the sound recorring field
Salary is within the scale ef, 181 to 88,025

this adverisement.

Instrument/

Electronics Technician Salary ranges $£ 5607-£ 6420$ and £6420-£7182
The Authority, in association with its various functions, perates a wide range of instrum.
communication and control systems.
A Technician is required to join a team responsible for
maintenance and commissioning of this equipment
Applicants, who should be qualified to TEC Ordinary or
Higher level (or equivalent), should have had several ears' experience in electricalal or electronic sevvicing. A basic knowledge of computers and programming would radio-telephone systems.
The person appointed will be based in the Division's
workshops at Bridgwater and should hold a valid full
driving licencer workshops at
driving licence.
Closing date: 3 September 1981
Application forms and job description obtainable from
Divisional Personnel Officer, PO Box 9 , King Square, Divisional Personnel O
Bridgwater. Tel: 57333 .

ARTICLES WANTED

WANTED!
all types of scrap and
REDUNDANT ELECTRONIC \& COMPUTER MATERIALS
TRANSISTORS $\&$ PRINTED
CIRCUIT BOARDS TO COMPLETE COMPUTERS THE COMMERCIAL SMELTING \& REFINING Co. Ltd. 171 FARRINGDON ROA
LONDON ECR 3 RAL
Tel: $01-8371475$

STORAGE SPACE Is expensive, why

WIRELESS WORLD SEPTEMBER 1981
Classified

CIRCOLEC

THE COMPLETE ELECTRONIC MANUFACTURING SERVIC Let us realise all or any part of your project from prototypes to
production, from artwork design and component sourcing through
assembly and test to final quality assurance packing assembly and test to tinal quality assurance, packing and delivery.
We also provide a test. repair and modification service to suit your
individual requirement individual requirement.
Free Offer! Ring for details of a free introductory offer to our sub-con
PCB assembly serice.
CIRCOLEC FREPOST (no postage required) London SW17 8BR
Telephone: 01-767 123

CUSTOM
Design and Build Electroni
and Power

SMAL BATCH PCB' produced

Tel. $01-405$
Til27/0806.

Roehampton

 InstitutePRINCIPLES AND PRACTICE OF TELEVISION PRODUCTION
A four-week summer school involving practical work on television
production, planning and techniques, operational skills, scriptwriting
and studio procedure and studio procedur

$$
1 \text { September-25 September }
$$

The Institute possesses a 1.500 square feet studio equipped with four
colour coar cameras and fully operational control room with specia
effects effects.
Three short part-time courses with a similar content will be offered
during 1981-82.

PHONE
YOUR
CLASSIFIEDS
TO
OPHELIA SMITH
ON
01-661 3033

INDEX TO ADVERTISERS SEPTEMBER

Appointments Vacant Advertisements appear on pages 116-127

OVERSEAS ADVERTISEMENT AGENTS: A.

Hungary: Mrs Editit Bajusz, Hungexpo Advertising

page

[^3]

[^4]

[^0]: ww - 026 FOR FURTHER DETAIL

[^1]: Fig. 16. Input pulses to represent speed distance and fuel flow, with further
 information manually entered, llow.c.p.u.
 to calculate various quantities.

[^2]: Reference
 10. Design of Racing Sports Cars. Colin Campbell. Chapman and Hall.
 11. Sidebands. Wireless World May 1981 .
 12. Install Compucruise. Travellin' Vans. Oct. 79. Clutter-free Radar for Cars. Shefer
 13. 13. Clutter-free Radar for Cars. Shefer,
 Klensch, Kaplan and Johnson. Wireless World
 May and June 1974. May and June 1974.

[^3]:

[^4]: Please send the ANTEX New Range full colour brochure to: NAME

